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Data Structures
• Data structures represent dynamic sets of instances.

• dynamic means the set can change.

• can be ordered or unordered.

• Data structures are abstractions: supporting group of operations:

• queries: 

• search, minimum, maximum, successor, predecessor…

• modifying operations:

• insert, delete…

• A proper data structure effectively speeds up the set operations.

in terms of the size of the DS
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Binary Search Trees (BSTs)

• Every node has at most two children.

• The left child is smaller, and the right child is larger.

• The tree operations (search, insert, delete, minimum, maximum, 
successor, predecessor…) have time costs closely related to tree depth.

• Balancing is to reduce tree depth in order to reduce time costs.

Figure courtesy: https://en.wikipedia.org/wiki/Binary_search_tree

https://en.wikipedia.org/wiki/Binary_search_tree
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Balanced BSTs



6

Target :  Speed up searching (with insertion and deletion)

Balanced BSTs



6

Target :  Speed up searching (with insertion and deletion)

Tool :  Binary search trees
root

smaller larger

Balanced BSTs



6

Target :  Speed up searching (with insertion and deletion)

Tool :  Binary search trees
root

smaller larger

Problem :  Although Tp = O( height ), but the height can be as 
bad as O( N ).

Balanced BSTs



7



7

〖Example〗  2 binary search trees obtained for the months of the year



7

〖Example〗  2 binary search trees obtained for the months of the year

Nov

Oct

Sept

May

Mar

June

July

Dec

Aug

Apr

Feb

Jan

Entered from Jan to Dec



7

〖Example〗  2 binary search trees obtained for the months of the year

Nov

Oct

Sept

May

Mar

June

July

Dec

Aug

Apr

Feb

Jan

July

June

Mar

May

Oct

SeptNov

Jan

Feb

Aug

Apr Dec

Entered from Jan to Dec

A balanced tree



7

〖Example〗  2 binary search trees obtained for the months of the year

Nov

Oct

Sept

May

Mar

June

July

Dec

Aug

Apr

Feb

Jan

July

June

Mar

May

Oct

SeptNov

Jan

Feb

Aug

Apr Dec

Entered from Jan to Dec

A balanced tree

Average search time =  3.5



7

〖Example〗  2 binary search trees obtained for the months of the year

Nov

Oct

Sept

May

Mar

June

July

Dec

Aug

Apr

Feb

Jan

July

June

Mar

May

Oct

SeptNov

Jan

Feb

Aug

Apr Dec

Entered from Jan to Dec

A balanced tree

Average search time =  3.5

Average search time =  3.1



7

〖Example〗  2 binary search trees obtained for the months of the year
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Entered from Jan to Dec

A balanced tree

Average search time =  3.5

Average search time =  3.1

Average search time of 
the skew tree =  6.5
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Why Not Use Complete BST?

The constraint is too strong.
BST needs to preserve instance order,

every operation involves global tuning of the structure.
We should relax the constraint.
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Adelson-Velskii-Landis (AVL) Trees  (1962)

• Self-balanced trees which dynamically modifies tree structure to keep 
the tree balanced during operations.

Figure courtesy: https://www.chessprogramming.org/Georgy_Adelson-Velsky

https://en.wikipedia.org/wiki/Evgenii_Landis

https://www.chessprogramming.org/Georgy_Adelson-Velsky
https://en.wikipedia.org/wiki/Evgenii_Landis
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Adelson-Velskii-Landis (AVL) Trees  (1962)

Figure courtesy: https://www.chessprogramming.org/Georgy_Adelson-Velsky
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Read the declaration and functions in [Weiss] Figures 4.42 – 4.48
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One last question:  
Obviously we have Tp = O( h ) 

    where h is the height of the tree.
But h = ?



18

Let nh be the minimum number of nodes in a height-balanced tree of 
height h.  What does the tree look like?

The worst case for AVL tree of height h.



18

Let nh be the minimum number of nodes in a height-balanced tree of 
height h.  What does the tree look like?

A

h−2 h−1

A

h−2h−1OR ⇒   nh = nh−1 + nh−2 + 1

The worst case for AVL tree of height h.



18

Let nh be the minimum number of nodes in a height-balanced tree of 
height h.  What does the tree look like?

A

h−2 h−1

A

h−2h−1OR ⇒   nh = nh−1 + nh−2 + 1

 Fibonacci numbers:   

             F0 = 0,  F1 = 1,  Fi = Fi−1 + Fi−2   for  i > 1

The worst case for AVL tree of height h.



18

Let nh be the minimum number of nodes in a height-balanced tree of 
height h.  What does the tree look like?

A

h−2 h−1

A

h−2h−1OR ⇒   nh = nh−1 + nh−2 + 1

 Fibonacci numbers:   

             F0 = 0,  F1 = 1,  Fi = Fi−1 + Fi−2   for  i > 1

⇒   nh = Fh+3 − 1,  for  h ≥ 0

The worst case for AVL tree of height h.



18

Let nh be the minimum number of nodes in a height-balanced tree of 
height h.  What does the tree look like?

A

h−2 h−1

A

h−2h−1OR ⇒   nh = nh−1 + nh−2 + 1

 Fibonacci numbers:   

             F0 = 0,  F1 = 1,  Fi = Fi−1 + Fi−2   for  i > 1

⇒   nh = Fh+3 − 1,  for  h ≥ 0

Fibonacci number theory gives that
i

iF ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
≈

2
51

5
1

The worst case for AVL tree of height h.

3



18

Let nh be the minimum number of nodes in a height-balanced tree of 
height h.  What does the tree look like?

A

h−2 h−1

A

h−2h−1OR ⇒   nh = nh−1 + nh−2 + 1

 Fibonacci numbers:   

             F0 = 0,  F1 = 1,  Fi = Fi−1 + Fi−2   for  i > 1

⇒   nh = Fh+3 − 1,  for  h ≥ 0

Fibonacci number theory gives that
i

iF ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
≈

2
51

5
1

)(ln1
2
51

5
1

2

nOhn
h

h =⇒−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
≈⇒

+

The worst case for AVL tree of height h.

3
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• Binary search trees

• AVL trees

• Splay trees

• Amortized analysis

• Take-home messages
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Splay Trees  (1985)

Figure courtesy: https://csd.cmu.edu/people/faculty/daniel-sleator

https://en.wikipedia.org/wiki/Robert_Tarjan


Robert Tarjan
Daniel Sleator


Self-Adjusting Binary Search Trees 

DANIEL DOMINIC SLEATOR AND  ROBERT ENDRE TARJAN 

A T&T Bell Laboratories, Murray Hill, NJ 

Abstract. The splay tree, a self-adjusting form of binary search tree, is developed and analyzed. The 
binary search tree is a data structure for representing tables and lists so that accessing, inserting, and 
deleting items is easy. On an n-node splay tree, all the standard search tree operations have an amortized 
time bound of @log n) per operation, where by “amortized time” is meant the time per operation 
averaged over a worst-case sequence of operations. Thus splay trees are as efficient as balanced trees 
when total running time is the measure of interest. In addition, for sufficiently long access sequences, 
splay trees are as efficient, to within a constant factor, as static optimum search trees. The efficiency of 
splay trees comes not from an explicit structural constraint, as with balanced trees, but from applying a 
simple restructuring heuristic, called splaying, whenever the tree is accessed. Extensions of splaying give 
simplified forms of two other data structures: lexicographic or multidimensional search trees and link/ 
cut trees. 

Categories and Subject Descriptors: E. 1 [Data]: Data Structures-trees; F.2.2 [Analysis of Algorithms 
and Problem Complexity]: Nonnumerical Algorithms and Problems-sorting and searching 
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1. Introduction 
In this paper we apply the related concepts of amortized complexity and se& 
adjustment to binary search trees. We are motivated by the observation that the 
known kinds of efficient search trees have various drawbacks. Balanced trees, such 
as height-balanced trees [2, 221, weight-balanced trees [26], and B-trees [6] and 
their variants [5, 18, 19,241 have a worst-case time bound of @log n) per operation 
on an n-node tree. However, balanced trees are not as efficient as possible if the 
access pattern is nonuniform, and they also need extra space for storage of balance 
information. Optimum search trees [ 16,20,22] guarantee minimum average access 
time, but only under the assumption of fixed, known access probabilities and no 
correlation among accesses. Their insertion and deletion costs are also very high. 
Biased search trees [7, 8, 131 combine the fast average access time of optimum 
trees with the fast updating of balanced trees but have structural constraints even 
more complicated and harder to maintain than the constraints of balanced trees. 
Finger search trees [ 11, 14, 19, 23, 241 allow fast access in the vicinity of one or 
more “fingers” but require the storage of extra pointers in each node. 
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Target :  Any M consecutive tree operations starting from an 
empty tree take at most O(M log N) time.

         Does it mean that every
    operation takes O(log N) time?

No.  It means that the 
    amortized time is O(log N). 

            So a single operation might 
         still take O(N) time?
  Then what’s the point?

The bound is weaker.
But the effect is the same:

  There are no bad input sequences.

            But if one node takes O(N) time 
         to access, we can keep accessing it

for M times, can’t we?

           Surely we can – that only means
           that whenever a node is accessed,

it must be moved. Otherwise visiting a
bad node repeatedly leads to bad performance

Idea :  After a node is accessed, it is pushed to the root by a 
series of AVL tree rotations.

Splay Trees



22



22

k5

F
k4

E
k3

D
k2

A
k1

CB



22

k5

F
k4

E
k3

D
k2

A
k1

CB



22

k5

F
k4

E
k3

D
k2

A
k1

CB



22

k5

F
k4

E
k3

D

k2

BA

k1

C



22

k5

F
k4

E

k2

BA

k1

k3

DC



22

k5

F

k4

E

k2

BA

k1

k3

DC



22

k4

E

k5

F

k2

BA

k1

k3

DC



22

k4

E

k5

F

k2

BA

k1

k3

DC



22

k4

E

k5

F

k2

BA

k1

k3

DC

Does NOT work!

The rotation pushes other nodes deeper
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An even worse case:
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T (N) = O ( N 2 ) 
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Compare the Zig-zig case:
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Compare the Zig-zig case:
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For zig-zig case, the right child of the node on splaying always goes deep.
The key is to make it go slower.
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Splaying not only moves the accessed 
node to the root, but also roughly halves 

the depth of most nodes on the path.
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Read the 32-node example given 
in [Weiss] Figures 4.52 – 4.60



28

Operations on Splay Trees



28

Deletions:

Operations on Splay Trees



28

Deletions:

☞ Step 1:  Find X ;

X will be at the root
due to splaying.

Operations on Splay Trees



28

Deletions:

☞ Step 1:  Find X ;

X will be at the root
due to splaying.

☞ Step 2:  Remove X ;

Operations on Splay Trees



28

Deletions:

☞ Step 1:  Find X ;

X will be at the root
due to splaying.

☞ Step 2:  Remove X ;

There will be two 
subtrees TL and TR .

Operations on Splay Trees



28

Deletions:

☞ Step 1:  Find X ;

X will be at the root
due to splaying.

☞ Step 2:  Remove X ;

There will be two 
subtrees TL and TR .

☞ Step 3:  FindMax ( TL ) ;

Operations on Splay Trees



28

Deletions:

☞ Step 1:  Find X ;

X will be at the root
due to splaying.

☞ Step 2:  Remove X ;

There will be two 
subtrees TL and TR .

☞ Step 3:  FindMax ( TL ) ;
The largest element 

will be the root of TL , 
and has no right child.

Operations on Splay Trees



28

Deletions:

☞ Step 1:  Find X ;

X will be at the root
due to splaying.

☞ Step 2:  Remove X ;

There will be two 
subtrees TL and TR .

☞ Step 3:  FindMax ( TL ) ;
The largest element 

will be the root of TL , 
and has no right child.

☞ Step 4:  Make TR the right child of the root of TL .

Operations on Splay Trees
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Join(t1, t2):
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FIG. 7. Implementation of join and split: (a) join(t,, t2 ) .  (b) 
split ( i, I ). 
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(b) 

FIG. 8. Implementation of insertion and deletion using join 
and split (a) insert(i, I). (b) delete(i, I ) .  

i, in t l .  After the access, the root of tl contains i and thus has a null right child. We 
complete the join by making t2 the right subtree of this root and returning the 
resulting tree. To carry out split(& t), we perform uccess(i, t) and then return the 
two trees formed by breaking either the left link or the right link from the new root 
oft, depending on whether the root contains an item greater than i or not greater 
than i .  (See Figure 7 . )  In both join and split we must deal specially with the case 
of an empty input tree (or trees). 

To carry out insert(i, t), we perform split(i, t )  and then replace t by a tree 
consisting of a new root node containing i, whose left and right subtrees are the 
trees t l  and t2 returned by the split. To carry out delete(i, t), we perform uc- 
cess(& t )  and then replace t by the join of its left and right subtrees. (See Figure 8.) 

There are alternative implementations of insert and delete that have slightly 
better amortized time bounds. To carry out insert(i, t), we search for i, then replace 
the pointer to null reached during the search by a pointer to a new node containing 
i, and finally splay the tree at the new node. To carry out delete(i, t), we search for 
the node containing i. Let this node be x and let its parent be y. We replace x as a 
child of y by the join of the left and right subtrees of x, and then we splay at y. (See 
Figure 9.) 
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the pointer to null reached during the search by a pointer to a new node containing 
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i, in t l .  After the access, the root of tl contains i and thus has a null right child. We 
complete the join by making t2 the right subtree of this root and returning the 
resulting tree. To carry out split(& t), we perform uccess(i, t) and then return the 
two trees formed by breaking either the left link or the right link from the new root 
oft, depending on whether the root contains an item greater than i or not greater 
than i .  (See Figure 7 . )  In both join and split we must deal specially with the case 
of an empty input tree (or trees). 

To carry out insert(i, t), we perform split(i, t )  and then replace t by a tree 
consisting of a new root node containing i, whose left and right subtrees are the 
trees t l  and t2 returned by the split. To carry out delete(i, t), we perform uc- 
cess(& t )  and then replace t by the join of its left and right subtrees. (See Figure 8.) 

There are alternative implementations of insert and delete that have slightly 
better amortized time bounds. To carry out insert(i, t), we search for i, then replace 
the pointer to null reached during the search by a pointer to a new node containing 
i, and finally splay the tree at the new node. To carry out delete(i, t), we search for 
the node containing i. Let this node be x and let its parent be y. We replace x as a 
child of y by the join of the left and right subtrees of x, and then we splay at y. (See 
Figure 9.) 

All operations involve a series of splay steps.
Check the details in the “Self-adjusting binary search trees” paper.

Next, we study the complexity of splay tree operations.
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• Binary search trees

• AVL trees

• Splay trees

• Amortized analysis

• Take-home messages
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Target :  Any M consecutive operations take at most O(M log N) time.

-- Amortized time bound

worst-case bound         amortized bound          average-case bound≥ ≥

Probability
is not involved

☞ Aggregate analysis

☞ Accounting method

☞ Potential method

Amortized Analysis
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Idea :  Show that for all n, a sequence of n operations takes worst-
case time T(n) in total.  In the worst case, the average cost, 
or amortized cost, per operation is therefore T(n)/n.

〖Example〗  Stack with MultiPop( int k, Stack S )

Algorithm  {
    while ( !IsEmpty(S) && k>0 ) {
        Pop(S);
        k - -;
    } /* end while-loop */ 
}

T = min ( sizeof(S), k )

Consider a sequence of n Push, Pop, 
and MultiPop operations on an initially
empty stack.

sizeof(S) ≤ n

Total = O( n2 ) ?

We can pop each object
from the stack at most once for each

time we have pushed it
onto the stack

Tamortized= O( n )/n = O(1)

Aggregate Method

The total time of pop should be less than the total time of push.
The total time of push takes at most O(n).
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              difference to specific objects in the data
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              for later operations whose amortized
              cost is less than their actual cost.
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iĉ for Push:      ; Pop:    ;  and MultiPop:2 0 0

Starting from an empty stack —— Credits for

Push:          ; Pop:          ; and MultiPop:+1



34

〖Example〗  Stack with MultiPop( int k, Stack S )

ic for Push:    ;   Pop:    ;  and MultiPop:1 1 min ( sizeof(S), k )
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The amortized
costs of the operations

may differ from
each other
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• The structure of the problem provides the constraints:

• Represent the states of the structure as potential functions.

• The potential function is bounded by the structural constraints.

• Bound the total cost by the increase of potential.

Potential Method
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• Why some problems have smaller amortized time cost?

• The structure of the problem provides the constraints:

• Represent the states of the structure as potential functions.

• The potential function is bounded by the structural constraints.

• Bound the total cost by the increase of potential.

Potential Method

All operations can not exceed the structural constraints.
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• What we want to bound?

• The amortized cost of a sequence of operations, e.g. search, 
delete, insert, split…

• Each operation involves slaying: a subsequence of rotations.

• The potential function is built on a state of tree. Let’s consider the 
amortized cost of sequence of rotations first.

Analysis of Splay Trees

Tree1 Tree2 Tree3
…rotation rotation rotation

<latexit sha1_base64="OpipjR7WAZaT0I7m/V17+pS2OKA=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLiWbZtvYbBKSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvUpwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jEw1oU0iudSdCBvKmaBNyyynHaUpTiJO29H4dua3n6g2TIoHO1E0TPBQsJgRbJ3U6qkR6wf9csWv+nOgVRLkpAI5Gv3yV28gSZpQYQnHxnQDX9kww9oywum01EsNVZiM8ZB2HRU4oSbM5tdO0ZlTBiiW2pWwaK7+nshwYswkiVxngu3ILHsz8T+vm9r4OsyYUKmlgiwWxSlHVqLZ62jANCWWTxzBRDN3KyIjrDGxLqCSCyFYfnmVtC6qQa1au7+s1G/yOIpwAqdwDgFcQR3uoAFNIPAIz/AKb570Xrx372PRWvDymWP4A+/zBz7Yju4=</latexit>

�1
<latexit sha1_base64="EP27LbjSsfnkhTZzpBnpiY+V7Gk=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqewWqR6LXjxWsLXQLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8La+sbmVnG7tLO7t39QPjxqG5VqylpUCaU7ITFMcMlallvBOolmJA4FewjHNzP/4Ylpw5W8t5OEBTEZSh5xSqyT2r1kxPu1frniVb058Crxc1KBHM1++as3UDSNmbRUEGO6vpfYICPacirYtNRLDUsIHZMh6zoqScxMkM2vneIzpwxwpLQrafFc/T2RkdiYSRy6zpjYkVn2ZuJ/Xje10VWQcZmklkm6WBSlAluFZ6/jAdeMWjFxhFDN3a2Yjogm1LqASi4Ef/nlVdKuVf16tX53UWlc53EU4QRO4Rx8uIQG3EITWkDhEZ7hFd6QQi/oHX0sWgsonzmGP0CfP0Bcju8=</latexit>

�2
<latexit sha1_base64="q5vzkwD4DXVdoQ8ZTmKF/tjhOGU=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4Krsq1WPRi8cK9gPapWTTbBubTUKSFcrS/+DFgyJe/T/e/Dem7R609cHA470ZZuZFijNjff/bW1ldW9/YLGwVt3d29/ZLB4dNI1NNaINILnU7woZyJmjDMstpW2mKk4jTVjS6nfqtJ6oNk+LBjhUNEzwQLGYEWyc1u2rIehe9Utmv+DOgZRLkpAw56r3SV7cvSZpQYQnHxnQCX9kww9oywumk2E0NVZiM8IB2HBU4oSbMZtdO0KlT+iiW2pWwaKb+nshwYsw4iVxngu3QLHpT8T+vk9r4OsyYUKmlgswXxSlHVqLp66jPNCWWjx3BRDN3KyJDrDGxLqCiCyFYfHmZNM8rQbVSvb8s127yOApwDCdwBgFcQQ3uoA4NIPAIz/AKb570Xrx372PeuuLlM0fwB97nD0HgjvA=</latexit>
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cancel out the number of rotations (zig:1; zig-zag:2; zig-zig:2).

∑
∈

=Φ
Ti

iST )(log)( where S(i) is the number of descendants of 
i (i included).

Rank of the subtree
≈ Height of the tree

Why not simply use the heights    
of the trees?
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【Lemma】 The total cost of           to splay a tree by a series of rotations 
with root T at node X is at most 3( R( T ) – R ( X ) ) + 1. 
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We should also consider the influences of other steps other than rotations
on the potential functions. 

Fortunately, their influences are minor.

【Lemma】 The total cost of           to splay a tree by a series of rotations 
with root T at node X is at most 3( R( T ) – R ( X ) ) + 1. 

<latexit sha1_base64="oX03TYL/1/KFkAH2hl0kl7usXuw=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VbC00oWy2m3bp7ibubgol9Hd48aCIV3+MN/+NmzYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRR8epIrRNYh6rbog15UzStmGG026iKBYhp4/h+Db3HydUaRbLBzNNaCDwULKIEWysFPg6FcgfYYNIn/WrNbfuzoFWiVeQGhRo9atf/iAmqaDSEI617nluYoIMK8MIp7OKn2qaYDLGQ9qzVGJBdZDNj56hM6sMUBQrW9Luz9XfExkWWk9FaDsFNiO97OXif14vNdF1kDGZpIZKslgUpRyZGOUJoAFTlBg+tQQTxeytiIywwsTYnCo2BG/55VXSuah7jXrj/rLWvCniKMMJnMI5eHAFTbiDFrSBwBM8wyu8ORPnxXl3PhatJaeYOYY/cD5/AC7Qkbw=</latexit>X
ĉi
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Theorem:
The amortized cost of a series of operations started from an empty splay 
tree is of order O(log N), where N is the number of all nodes involved in 

the operations. 
Read the original splay tree paper for details.

bounded by log(N)
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• Binary search trees

• AVL trees

• Splay trees

• Amortized analysis

• Take-home messages



Take-Home Messages

• Balanced binary search trees:

• Reduce depth to reduce cost of operations.

• AVL trees: 

• Satisfying height-balanced condition. Conduct rotations to achieve 
self-balancing once the condition is violated.

• Splay trees:

• Achieving self-balancing by conducting splaying steps for any 
operations.

• Amortized analysis:

• Averaging the total cost which is limited by the structure.
43
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Thanks for your attention!
Discussions?
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