Advanced Data Structures
and Algorithm Analysis

T A48
AL K3

Spring & Summer 2024

Lecture |
2024-2-26

Outline:
Balanced Binary Search Trees (1)

Binary search trees
AVL trees

Splay trees
Amortized analysis

Take-home messages

Acknowledgements:

This lecture is adapted from the slides designed by
Prof.Yue Chen and the ZJU ADS course group.

Outline:
Balanced Binary Search Trees (1)

® Binary search trees

Acknowledgements:

This lecture is adapted from the slides designed by
Prof.Yue Chen and the ZJU ADS course group.

Data Structures

® Data structures represent dynamic sets of instances.
® dynamic means the set can change.

® can be ordered or unordered.

Data Structures

® Data structures represent dynamic sets of instances.
® dynamic means the set can change.

® can be ordered or unordered.

® Data structures are abstractions: supporting group of operations:
® queries:
® search, minimum, maximum, successor, predecessor...
® modifying operations:

® insert, delete...

Data Structures

® Data structures represent dynamic sets of instances.
® dynamic means the set can change.

® can be ordered or unordered.

® Data structures are abstractions: supporting group of operations:
® queries:
® search, minimum, maximum, successor, predecessor...
® modifying operations:

® insert, delete...

e A proper data structure effectively speeds up the set operations.

in terms of the size of the DS

Binary Search Trees (BSTs)

® Every node has at most two children.

Figure courtesy: https://en.wikipedia.org/wiki/Binary_search_tree

https://en.wikipedia.org/wiki/Binary_search_tree

Binary Search Trees (BSTs)

® Every node has at most two children.

® The left child is smaller, and the right child is larger.

Figure courtesy: https://en.wikipedia.org/wiki/Binary_search_tree

https://en.wikipedia.org/wiki/Binary_search_tree

Binary Search Trees (BSTs)

® Every node has at most two children.
® The left child is smaller, and the right child is larger.

® The tree operations (search, insert, delete, minimum, maximum,
successor, predecessor...) have time costs closely related to tree depth.

Figure courtesy: https://en.wikipedia.org/wiki/Binary_search_tree

https://en.wikipedia.org/wiki/Binary_search_tree

Binary Search Trees (BSTs)

® Every node has at most two children.
® The left child is smaller, and the right child is larger.

® The tree operations (search, insert, delete, minimum, maximum,
successor, predecessor...) have time costs closely related to tree depth.

¢ Balancing is to reduce tree depth in order to reduce time costs.

Figure courtesy: https://en.wikipedia.org/wiki/Binary_search_tree

https://en.wikipedia.org/wiki/Binary_search_tree

Balanced BSTs

Balanced BSTs

Tal"get . Speed up searching (with insertion and deletion)

Balanced BSTs

@ Tal"get . Speed up searching (with insertion and deletion)

w\ Tool : Binary search trees
Csmaller >

Balanced BSTs

@ Tal"get . Speed up searching (with insertion and deletion)

w\ Tool : Binary search trees
Csmaller >

R
ll Problem : Aithough T, = O(height), but the height can be as

bad as O(N).

[(Example)] 2 binary search trees obtained for the months of the year

[(Example)] 2 binary search trees obtained for the months of the year

Entered from Jan to Dec

[(Example)] 2 binary search trees obtained for the months of the year

A balanced tree

[(Example)] 2 binary search trees obtained for the months of the year

Average search time = 3.5

A balanced tree

[(Example)] 2 binary search trees obtained for the months of the year

Average search time = 3.5

A balanced tree

[(Example)] 2 binary search trees obtained for the months of the year

Average search time = 3.5

Average search time of
the skew tree = 6.5

A balanced tree

Why Not Use Complete BST?

Why Not Use Complete BST?

The constraint is too strong.
BST needs to preserve instance order,
every operation involves global tuning of the structure.
We should relax the constraint.

Outline:
Balanced Binary Search Trees (1)

o AVL trees

Adelson-Velskii-Landis (AVL) Trees (1962)

® Self-balanced trees which dynamically modifies tree structure to keep
the tree balanced during operations.

Figure courtesy: https://www.chessprogramming.org/Georgy_Adelson-Velsky 0
https://en.wikipedia.org/wiki/Evgenii_Landis

https://www.chessprogramming.org/Georgy_Adelson-Velsky
https://en.wikipedia.org/wiki/Evgenii_Landis

Adelson-Velskii-Landis (AVL) Trees (1962)

Figure courtesy: https://www.chessprogramming.org/Georgy Adelson-Velsky

11

AVL Trees

[Definition] An empty binary tree is height-balanced. If T is a nonempty binary
tree with T, and T, as its left and right subtrees, then T is height-balanced iff

(I) T, and T; are height balanced, and
(2) | h, — hg | = | where h, and h; are the heights of T, and T, , respectively.

12

AVL Trees

The height of an empty tree
is defined to be —I.

[Definition] An empty binary tree is height-balanced. If T is a nonempty binary
tree with T, and T, as its left and right subtrees, then T is height-balanced iff

(I) T, and T; are height balanced, and
(2) | h, — hg | = | where h, and h; are the heights of T, and T, , respectively.

12

AVL Trees

The height of an empty tree
is defined to be —I.

[Definition] An empty binary tree is height-balanced. If T is a nonempty binary
tree with T, and T, as its left and right subtrees, then T is height-balanced iff

(I) T, and T; are height balanced, and
(2) | h, — hg | = | where h, and h; are the heights of T, and T, , respectively.

[Definition, AVL tree] The balance factor BF(node) = h, — hy . In an AVL tree,
BF(node) = —1,0,0r I.

12

AVL Trees

The height of an empty tree
is defined to be —I.

[Definition] An empty binary tree is height-balanced. If T is a nonempty binary
tree with T, and T, as its left and right subtrees, then T is height-balanced iff

(I) T, and T; are height balanced, and
(2) | h, — hg | = | where h, and h; are the heights of T, and T, , respectively.

[Definition, AVL tree] The balance factor BF(node) = h, — hy . In an AVL tree,
BF(node) = —1,0,0r I.

12

AVL Trees

The height of an empty tree
is defined to be —I.

[Definition] An empty binary tree is height-balanced. If T is a nonempty binary
tree with T, and T, as its left and right subtrees, then T is height-balanced iff

(I) T, and T; are height balanced, and
(2) | h, — hg | = | where h, and h; are the heights of T, and T, , respectively.

[Definition, AVL tree] The balance factor BF(node) = h, — hy . In an AVL tree,
BF(node) = —1,0,0r I.

12

AVL Trees

The height of an empty tree
is defined to be —I.

[Definition] An empty binary tree is height-balanced. If T is a nonempty binary
tree with T, and T, as its left and right subtrees, then T is height-balanced iff

(I) T, and T; are height balanced, and
(2) | h, — hg | = | where h, and h; are the heights of T, and T, , respectively.

[Definition, AVL tree] The balance factor BF(node) = h, — hy . In an AVL tree,
BF(node) = —1,0,0r I.

12

AVL Trees

The height of an empty tree
is defined to be —I.

[Definition] An empty binary tree is height-balanced. If T is a nonempty binary
tree with T, and T, as its left and right subtrees, then T is height-balanced iff

(I) T, and T; are height balanced, and
(2) | h, — hg | = | where h, and h; are the heights of T, and T, , respectively.

[Definition, AVL tree] The balance factor BF(node) = h, — hy . In an AVL tree,
BF(node) = —1,0,0r I.

12

13

[(Example)]

Input the months

13

[(Example)] Input the months
0

13

[(Example)] Input the months
—1

CMar

0

CMay >

13

[(Example)]

Input the months

13

[(Example)]

Input the months

13

[(Example)]

Input the months

13

[(Example)] Input the months

0

Single rotation m
[

0 0

CMar > CNov >

O The trouble maker Nov is in the right subtree’s right subtree of the trouble

finder Mar. Hence it is called an RR rotation.

13

[(Example)] Input the months

0

Single rotation m
[

0 0

CMar > CNov >

O The trouble maker Nov is in the right subtree’s right subtree of the trouble

finder Mar. Hence it is called an RR rotation.

In general:

13

[(Example)] Input the months

0

Single rotation m
[

0 0

CMar > CNov >

O The trouble maker Nov is in the right subtree’s right subtree of the trouble

finder Mar. Hence it is called an RR rotation.

In general:

13

[(Example)] Input the months

0

Single rotation m
[

0 0

CMar > CNov >

O The trouble maker Nov is in the right subtree’s right subtree of the trouble

finder Mar. Hence it is called an RR rotation.

In general:

RR

Insertion

13

[(Example)] Input the months

0

Single rotation m
[

0 0

CMar > CNov >

O The trouble maker Nov is in the right subtree’s right subtree of the trouble

finder Mar. Hence it is called an RR rotation.

In general:
0
RR
o——— RR @
Insertion —- e

Rotation

13

[(Example)] Input the months

0

Single rotation m
[

0 0

CMar > CNov >

O The trouble maker Nov is in the right subtree’s right subtree of the trouble

finder Mar. Hence it is called an RR rotation.

In general:

RR

Insertion

[(Example)] Input the months

0

Single rotation m
[

0 0

CMar > CNov >

O The trouble maker Nov is in the right subtree’s right subtree of the trouble

finder Mar. Hence it is called an RR rotation.

A is not necessarily
the root of the tree

In general:

0
RR
- RR 0 @
Insertion —-
Rotation e
AL
B, Ap Bp

13

14

14

14

What can we do now!?

14

14

14

In general:

14

14

14

14

14

15

15

15

Rotation

15

Rotation

In general:

15

Rotation

15

15

Rotation
Oorl

15

Rotation
Oorl

15

Rotation
Oorl

15

2 Double Rotation

Rotation
Oorl

15

16

16

16

16

In general:

16

16

17

17

17

17

17

17

17

17

Note: Several bf’s
might be changed even if
we don’t need to reconstruct

the tree.

17

Note: Several bf’s
might be changed even if
we don’t need to reconstruct

the tree.

Another option is to keep a height field for each node.

17

Note: Several bf’s
might be changed even if
we don’t need to reconstruct

the tree.

Another option is to keep a height field for each node.

[Read the declaration and functions in [Weiss] Figures 4.42 — 4.48

17

One last question:
Obviously we have T, = O(h)

where h is the height of the tree.
But h =

Let n, be the minimum number of nodes in a height-balanced tree of

height h. What does the tree look like!?
The worst case for AVL tree of height h.

18

Let n, be the minimum number of nodes in a height-balanced tree of

height h. What does the tree look like!?

h-2

h—-1

OR

The worst case for AVL tree of height h.

h—-1

h-2

18

Let n, be the minimum number of nodes in a height-balanced tree of

height h. What does the tree look like?

h-2

h-1

OR

The worst case for AVL tree of height h.

h-1

h-2

18

Let n, be the minimum number of nodes in a height-balanced tree of

height h. What does the tree look like?

h-2

h-1

OR

The worst case for AVL tree of height h.

h-1

h-2

18

Let n, be the minimum number of nodes in a height-balanced tree of

height h. What does the tree look like?
The worst case for AVL tree of height h.

h=2 -1 | OR| 75-1 =2 | = nmy=n tn,,+1

Fibonacci number theory gives that F 1 (1+ \/g)

3 5

18

Let n, be the minimum number of nodes in a height-balanced tree of
height h. What does the tree look like!?

@ @ The worst case for AVL tree of height h.

h-2 h-1 OR h-1 h=2 = n,=n,_ tn,,+1

Fibonacci number theory gives that F ~ 1 (1+ \/g)

. 5l 2
1(1+J§"3

n, = -1 = h=0(nn
=2) (Inn)

18

Outline:
Balanced Binary Search Trees (1)

e Splay trees

19

Splay Trees (1985)

Daniel Sleator Robert Tarj an
Self-Adjusting Binary Search Trees

DANIEL DOMINIC SLEATOR AND ROBERT ENDRE TARJAN

AT&T Bell Laboratories, Murray Hill, NJ

Figure courtesy: https://csd.cmu.edu/people/faculty/daniel-sleator
https://en.wikipedia.org/wiki/Robert_Tarjan

20

https://csd.cmu.edu/people/faculty/daniel-sleator
https://en.wikipedia.org/wiki/Robert_Tarjan

Splay Trees

Splay Trees

Tal'gEt e Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

21

Splay Trees

Tal'gEt e Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

Does it mean that every
operation takes O(log N) time?

21

Splay Trees

Tal'gEt e Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

No. It means that the Does it mean that every
amortized time is O(log N). - _ration takes O(log N) time?

21

Splay Trees

Tal'gEt e Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

So a single operation might
still take O(N) time!?
Then what’s the point!?

No. It means that the
amortized time is O(log N).

21

Splay Trees

Tar'get e Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

The bound is weaker. ‘0 a single operation might
But the effect is the same: still take O(N) time!?
There are no bad input sequences. .en what’s the point?

21

Splay Trees

Tar'get e Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

The bound is weaker. But if one node takes O(N) time

But the effect is the sam to access, we can keep accessing it
There are no bad input seque for M times, can’t we!

21

Splay Trees

Tar'get e Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

Surely we can — that only means
that whenever a node is accessed, : if one node takes O(N) time
it must be moved. Otherwise visiting a ess, we can keep accessing it
bad node repeatedly leads to bad performance .or M times, can’t we!

21

Splay Trees

Tal'get e Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

Surely we can — that only means
that whenever a node is accessed, : if one node takes O(N) time
it must be moved. Otherwise visiting a ess, we can keep accessing it
bad node repeatedly leads to bad performance .or M times, can’t we!

Idea : After a node is accessed, it is pushed to the root by a
\ series of AVL tree rotations.

21

22

s

&) @)
%

¥

7Y

Does NOT work!

The rotation pushes other nodes deeper

23

An even worse case:

23

An even worse case:

23

An even worse case:

23

An even worse case:

23

An even worse case:

23

An even worse case:

23

An even worse case:

Insert: 1,2,3,... N

23

An even worse case:

Insert: 1,2,3,... N

23

An even worse case:

Insert: 1,2,3,... N

Find: |

23

An even worse case:

Insert: 1,2,3,... N

Find: |

23

An even worse case:

Insert: 1,2,3,... N

Find: 2

Find: |

23

An even worse case:

Insert: 1,2,3,... N

Find: 2

Find: |

23

An even worse case:

Insert: 1,2,3,... N

Find: 2

Find: |

23

An even worse case:

Insert: 1,2,3,... N

Find: 2

Find: |

23

An even worse case:

Insert: 1,2,3,... N ﬂ) Find: | G&

Find:2 (B) e Find: N /Q\f)

@/ T(N)= O(N2)

23

24

Try again -- For any nonroot node X, denote its parent by P and grandparent
by G :

24

Zig

Try again -- For any nonroot node X, denote its parent by P and grandparent
by G :

Case |: Pis the root

24

Zig

Try again -- For any nonroot node X, denote its parent by P and grandparent
by G :

Case |: Pis the root ==mp Rotate X andP

24

Zig

Try again -- For any nonroot node X, denote its parent by P and grandparent
by G :

Case |: Pis the root ==mp Rotate X andP

Case 2: P is not the root

24

Zig

Try again -- For any nonroot node X, denote its parent by P and grandparent
by G :

Case |: Pis the root ==mp Rotate X andP

Case 2: P is not the root

Zig-zag

24

Zig

Try again -- For any nonroot node X, denote its parent by P and grandparent
by G :

Case |: Pis the root ==mp Rotate X andP

Case 2: P is not the root

Zig-zag

Double rotation

24

Zig

Try again -- For any nonroot node X, denote its parent by P and grandparent
by G :

Case |: Pis the root ==mp Rotate X andP

Case 2: P is not the root

Zig-zag

Double rotation

24

Zig

Try again -- For any nonroot node X, denote its parent by P and grandparent
by G :

Case |: Pis the root ==mp Rotate X andP

Case 2: P is not the root

Zig-zag

Double rotation

24

Zig

Try again -- For any nonroot node X, denote its parent by P and grandparent
by G :

Case |: Pis the root ==mp Rotate X andP

Case 2: P is not the root

Zig-zag

Double rotation

Single rotation

——

24

Zig

Try again -- For any nonroot node X, denote its parent by P and grandparent
by G :

Case |: Pis the root ==mp Rotate X andP

Case 2: P is not the root

Zig-zag

Double rotation

24

Compare the Zig-zig case:

Compare the Zig-zig case:

fﬁ% - {A

@Q — 4‘1@

A5

12

For zig-zig case, the right child of the node on splaying always goes deep.

The key is to make it go slower.

25

26

Splaying not only moves the accessed
node to the root, but also roughly halves
the depth of most nodes on the path.

26

27

Insert: |,2,3,4,5,6,7

27

Insert: |,2,3,4,5,6,7

Insert: |,2,3,4,5,6,7

Find: |

27

Insert: |,2,3,4,5,6,7

Insert: |,2,3,4,5,6,7 Find: |

PP P9
g g R
Foog g go
goog r 4o
Food g

Read the 32-node example given
in [Weiss] Figures 4.52 — 4.60

Operations on Splay Trees

Operations on Splay Trees

Deletions:

28

Operations on Splay Trees

Deletions: X will be at the root
due to splaying.
I~ Step I: Find X ;

28

Operations on Splay Trees

Deletions: X will be at the root
due to splaying.
I~ Step I: Find X ;

Sh Step 2: Remove X ;

28

Operations on Splay Trees

Deletions: X will be at the root
due to splaying.
I~ Step I: Find X ;

There will be two
subtrees T, and T;.

Sh Step 2: Remove X ;

28

Operations on Splay Trees

Deletions: X will be at the root
due to splaying.
I~ Step I: Find X ;

There will be two
subtrees T, and T;.

Sh Step 2: Remove X ;

IS~ Step 3: FindMax (T,) ;

28

Operations on Splay Trees

Deletions: X will be at the root
due to splaying.
I~ Step I: Find X ;

There will be two
subtrees T, and T;.

Sh Step 2: Remove X ;

The largest element
will be the root of T,

and has no right child.

IS~ Step 3: FindMax (T,) ;

28

Operations on Splay Trees

Deletions: X will be at the root
due to splaying.
I~ Step I: Find X ;

There will be two
subtrees T, and T;.

Sh Step 2: Remove X ;

The largest element
will be the root of T,

and has no right child.

IS~ Step 3: FindMax (T,) ;

IS~ Step 4: Make Ty the right child of the root of T, .

28

Operations on Splay Trees

Join(tl, t2): % JAN E‘i?.y. AD AN ﬁ

f2 ot
v B Far
| 2 |

Insert(i, t): /\ Ep—hl N N\ — S Z

t

Delete(i, t): iy & — A A T

All operations involve a series of splay steps.
Check the details in the “Self-adjusting binary search trees” paper.
Next, we study the complexity of splay tree operations.

Split(i, t):

29

Outline:
Balanced Binary Search Trees (1)

®* Amortized analysis

30

Amortized Analysis

Amortized Analysis

Target . Any M consecutive operations take at most O(M log N) time.

31

Amortized Analysis

Target . Any M consecutive operations take at most O(M log N) time.
-- Amortized time bound

31

Amortized Analysis

-- Amortized time bound

worst-case bound amortized bound average-case bound

Target . Any M consecutive operations take at most O(M log N) time.

31

Amortized Analysis

-- Amortized time bound

worst-case bound = amortized bound average-case bound

Target . Any M consecutive operations take at most O(M log N) time.

31

Amortized Analysis

-- Amortized time bound

worst-case bound = amortized bound = average-case bound

Target . Any M consecutive operations take at most O(M log N) time.

31

Amortized Analysis

-- Amortized time bound

worst-case bound = amortized bound = average-case bound

Probability
is not involved

Target . Any M consecutive operations take at most O(M log N) time.

31

Amortized Analysis

Target . Any M consecutive operations take at most O(M log N) time.

-- Amortized time bound

worst-case bound = amortized bound = average-case bound

Probability
is not involved

<3 Aggregate analysis
S Accounting method

& Potential method

31

Aggregate Method

Aggregate Method

ldea : Show that for all n,a sequence of n operations takes worst-

case time T(n) in total. In the worst case, the average cost,
or amortized cost, per operation is therefore T(n)/n.

32

Aggregate Method

ldea : Show that for all n,a sequence of n operations takes worst-

: case time T(n) in total. In the worst case, the average cost,
\/ or amortized cost, per operation is therefore T(n)/n.

[(Example]] Stack with MultiPop(int k, Stack S)

32

Aggregate Method

ldea : Show that for all n,a sequence of n operations takes worst-

: case time T(n) in total. In the worst case, the average cost,
\/ or amortized cost, per operation is therefore T(n)/n.

[(Example]] Stack with MultiPop(int k, Stack S)

Algorithm {
while (IsEmpty(S) && k>0) {
Pop(S);
k- -
} I* end while-loop */

}

32

Aggregate Method

ldea : Show that for all n,a sequence of n operations takes worst-

: case time T(n) in total. In the worst case, the average cost,
\/ or amortized cost, per operation is therefore T(n)/n.

[(Example]] Stack with MultiPop(int k, Stack S)

Algorithm {
while (IsEmpty(S) && k>0) {
Pop(S);
k- -
} I* end while-loop */

} T = min (SiZeOf(S), k)

32

Aggregate Method

ldea : Show that for all n,a sequence of n operations takes worst-

: case time T(n) in total. In the worst case, the average cost,
\/ or amortized cost, per operation is therefore T(n)/n.

[(Example]] Stack with MultiPop(int k, Stack S)

Algorithm {
while (IsEmpty(S) && k>0) {
Pop(S);
k- -
} I* end while-loop */

} T = min (SiZeOf(S), k)

Consider a sequence of n Push, Pop,

and MultiPop operations on an initially
empty stack.

32

Aggregate Method

ldea : Show that for all n,a sequence of n operations takes worst-

: case time T(n) in total. In the worst case, the average cost,
\/ or amortized cost, per operation is therefore T(n)/n.

[(Example]] Stack with MultiPop(int k, Stack S)

Algorithm {
while (IsEmpty(S) && k>0) {
Pop(S);
k- -
} I* end while-loop */

} T = min (SiZeOf(S), k)

Consider a sequence of n Push, Pop,

and MultiPop operations on an initially
empty stack.

sizeof(S) < n

32

Aggregate Method

ldea : Show that for all n,a sequence of n operations takes worst-

: case time T(n) in total. In the worst case, the average cost,
\/ or amortized cost, per operation is therefore T(n)/n.

Total = O(n2)?
[(Example]] Stack with MultiPop(int k, Stack S)

Consider a sequence of [/Push, Pop,

Algorithm { : - o
while (IsEmpty(S) && k>0) { Zr:,j :/IL;EE?P operatiohs on an initially
Pop(S); PR Sttt
k- -

} I* end while-loop */

} T = min (SiZeOf(S), k)

sizeof(S) < n

32

Aggregate Method

ldea : Show that for all n,a sequence of n operations takes worst-

: case time T(n) in total. In the worst case, the average cost,
\/ ration is therefore T(n)/n.

We can pop each object
from the stack at most once for each
time we have pushed it
onto the stack

[(Example]] Stack wi tack S)

Total = O(n2)?

onsider a sequence of /Push, Pop,

A|g0rl.thm { amd MultiPop operations on an initially
while (!IsEmpty(S) && k>0) { empty stack
Pop(S); PH .
k--

} I* end while-loop */

} T = min (SiZeOf(S), k)

sizeof(S) < n

32

Aggregate Method

ldea : Show that for all n,a sequence of n operations takes worst-

: case time T(n) in total. In the worst case, the average cost,
\/ ration is therefore T(n)/n.

We can pop each object
from the stack at most once for each
time we have pushed it
onto the stack

Total = O(n2)?

[(Example]] Stack wi tack S)
_ onsider a sequence of /Push, Pop,
ST amd MultiPop operatios on an initiall
while (11sEmpty(S) && k>0) { etk P op Y
Pop(S); PrY SRt
k- -

} I* end while-loop */

} T = min (SiZeOf(S), k)

sizeof(S) < n

T =0(n)/n=0(l)

amortized

32

Aggregate Method

ldea : Show that for all n,a sequence of n operations takes worst-

: case time T(n) in total. In the worst case, the average cost,
\/ ration is therefore T(n)/n.

We can pop each object
from the stack at most once for each
time we have pushed it
onto the stack

[(Example]] Stack wi tack S)

Total = O(n2)?

onsider a sequence of /Push, Pop,

Algorl.thm { amd MultiPop operations on an initially
while (!IsEmpty(S) && k>0) { empty stack
Pop(S); PH .
k--

} I* end while-loop */

} T = min (SiZeOf(S), k)

sizeof(S) < n

T =0(n)/n=0(l)

amortized

The total time of pop should be less than the total time of push.

The total time of push takes at most O(n). 32

Accounting Method

Accounting Method

A
ldea : Whenan operation’s amortized cost C;

\ ' exceeds its actual cost C;,we assign the
/ difference to specific objects in the data
structure as credit. Credit can help pay
for later operations whose amortized
cost is less than their actual cost.

33

\

Accounting Method

A
ldea : Whenan operation’s amortized cost C;

i

O

Savings
Account

exceeds its actual cost C;,we assign the
difference to specific objects in the data
structure as credit. Credit can help pay
for later operations whose amortized
cost is less than their actual cost.

33

Accounting Method

A
ldea : Whenan operation’s amortized cost C;

7

Savings
@ Account

exceeds its actual cost C;,we assign the
difference to specific objects in the data
structure as credit. Credit can help pay
for later operations whose amortized
cost is less than their actual cost.

Note: For all sequences of n operations, we must have

n n

Se=3e

=1 =1

33

Accounting Method

A
ldea : Whenan operation’s amortized cost C;

7

Savings
@ Account

exceeds its actual cost C;,we assign the
difference to specific objects in the data
structure as credit. Credit can help pay
for later operations whose amortized
cost is less than their actual cost.

Note: For all sequences of n operations, we must have

n n
Se=3e
=1 =1

n

1 .
Tamortized — ﬁ E Cj

7

33

34

[(Example]] Stack with MultiPop(int k, Stack S)

34

[(Example]] Stack with MultiPop(int k, Stack S)
¢; for Push: ; Pop: ; and MultiPop:

34

[(Example]] Stack with MultiPop(int k, Stack S)
¢; for Push: 1; Pop: ; and MultiPop:

34

[(Example]] Stack with MultiPop(int k, Stack S)
¢; for Push: 1; Pop: 1; and MultiPop:

34

[(Example]] Stack with MultiPop(int k, Stack S)
¢; for Push: 1; Pop: 1; and MultiPop: min (sizeof(S), k)

34

[(Example]] Stack with MultiPop(int k, Stack S)
¢; for Push: 1; Pop: 1; and MultiPop: min (sizeof(S), k)

¢; forPush: ;Pop: ; and MultiPop:

34

[(Example]] Stack with MultiPop(int k, Stack S)
¢; for Push: 1; Pop: 1; and MultiPop: min (sizeof(S), k)

¢; for Push:2 ;Pop: ; and MultiPop:

34

[(Example]] Stack with MultiPop(int k, Stack S)
¢; for Push: 1; Pop: 1; and MultiPop: min (sizeof(S), k)

¢; for Push: 2 ;Pop:0; and MultiPop:

34

[(Example]] Stack with MultiPop(int k, Stack S)
¢; for Push: 1; Pop: 1; and MultiPop: min (sizeof(S), k)

¢; for Push: 2 ;Pop: 0; and MultiPop: 0

34

[(Example]] Stack with MultiPop(int k, Stack S)
¢; for Push: 1; Pop: 1; and MultiPop: min (sizeof(S), k)

¢; for Push: 2 ;Pop: 0; and MultiPop: 0

Credits for

Starting from an empty stack

34

[(Example]] Stack with MultiPop(int k, Stack S)
¢; for Push: 1; Pop: 1; and MultiPop: min (sizeof(S), k)

¢; for Push: 2 ;Pop: 0; and MultiPop: 0

Credits for

Starting from an empty stack

Push: ; Pop: ;and MultiPop:

34

[(Example]] Stack with MultiPop(int k, Stack S)
¢; for Push: 1; Pop: 1; and MultiPop: min (sizeof(S), k)

¢; for Push: 2 ;Pop: 0; and MultiPop: 0

Credits for

Starting from an empty stack

Push: +1 ;Pop: ;and MultiPop:

34

[(Example]] Stack with MultiPop(int k, Stack S)
¢; for Push: 1; Pop: 1; and MultiPop: min (sizeof(S), k)

¢; for Push: 2 ;Pop: 0; and MultiPop: 0

Credits for

Starting from an empty stack

Push: +I ;Pop: —I ;and MultiPop:

34

[(Example]] Stack with MultiPop(int k, Stack S)
¢; for Push: 1; Pop: 1; and MultiPop: min (sizeof(S), k)

¢; for Push: 2 ;Pop: 0; and MultiPop: 0

Credits for

Starting from an empty stack

Push: +I ;Pop: -1 ;and MultiPop: -1 for each +I

34

[(Example]] Stack with MultiPop(int k, Stack S)
¢; for Push: 1; Pop: 1; and MultiPop: min (sizeof(S), k)

¢; for Push: 2 ;Pop: 0; and MultiPop: 0

Credits for

Starting from an empty stack

Push: +I ;Pop: -1 ;and MultiPop: -1 for each +I

sizeof(S) =0 WP Credits = 0

34

[(Example]] Stack with MultiPop(int k, Stack S)
¢; for Push: 1; Pop: 1; and MultiPop: min (sizeof(S), k)

¢; for Push: 2 ;Pop: 0; and MultiPop: 0

Credits for

Starting from an empty stack

Push: +I ;Pop: -1 ;and MultiPop: -1 for each +I

sizeof(S) =0 WP Credits = 0

34

[(Example]] Stack with MultiPop(int k, Stack S)
¢; for Push: 1; Pop: 1; and MultiPop: min (sizeof(S), k)

¢; for Push: 2 ;Pop: 0; and MultiPop: 0

Starting from an empty stack Credits for
Push: +I ;Pop: -1 ;and MultiPop: -1 for each +I
sizeof(S) =0 WP Credits = 0
n) n
mp O(n)= Eci > Ecl
=1 =1

- Tamortized= O(n)/n = O(I)

34

[(Example]] Stack with MultiPop(int k, Stack S)
¢; for Push: 1; Pop: 1; and MultiPop: min (sizeof(S), k)

¢; for Push: 2 ;Pop: 0; and MultiPop: 0

Starting from a

Push: +1 ;Pop: —

The amortized
costs of the operations
may differ from
each other

- Tamortized= O(n)/n = O(I)

34

Potential Method

®* Why some problems have smaller amortized time cost?

® The structure of the problem provides the constraints:

® Represent the states of the structure as potential functions.
® The potential function is bounded by the structural constraints.

® Bound the total cost by the increase of potential.

35

Potential Method

®* Why some problems have smaller amortized time cost?

® The structure of the problem provides the constraints:
All operations can not exceed the structural constraints.
® Represent the states of the structure as potential functions.

® The potential function is bounded by the structural constraints.

® Bound the total cost by the increase of potential.

35

Potential Method

Potential Method

Idea = Take a closer look at the credit --

36

Potential Method

Idea = Take a closer look at the credit --
¢, —c; = Credit, = ©(D,)- O(D,_,)

36

Potential Method

Idea = Take a closer look at the credit --
¢, — ¢, = Credit, = ®(D,)- O(D,_,)

36

Potential Method

Idea = Take a closer look at the credit --

\/ ¢, —c, = Credit, = D(D,)- D(D,_,)
Eﬁalﬂln@

n

Yeé - E (¢, + D(D,))- (D, ,))

=1 1

36

Potential Method

Idea = Take a closer look at the credit --
\/ ¢, —c, = Credit, = ®(D,) - (D,_,)

D= e+ 00)-0(D,.)

=1 I=

(Ec)+c1>(1)) d(D,)

=1

36

Potential Method

Idea = Take a closer look at the credit --
\/ ¢, —c, = Credit, = ®(D,) - (D,_,)

D= e+ 00)-0(D,.)

=1 I=

(Ec)+c1>(1)) d(D,)

=1 20

36

Potential Method

Idea = Take a closer look at the credit --

\/ ¢, —c, = Credit, = D(D,)- D(D,_,)

= Potential funD
N é =N (e +®(D)- (D))
=1 =1

=(ic,.)+<1>(1),,)—<1>(1)0)

1=1 > 0

In general, a good potential function should always assume its minimum at

the start of the sequence.
36

Potential Method

Idea = Take a closer look at the credit --

\/ ¢, —c, = Credit, = D(D,)- D(D,_,)

= Potential funD
N é =N (e +®(D)- (D))
=1 =1

= Y |+ 2(D,)-D(D,)

=1 / >0

Should be bounded.

In general, a good potential function should always assume its minimum at

the start of the sequence.
36

AVL Trees, Splay Trees, and Amortized Analysis

37

AVL Trees, Splay Trees, and Amortized Analysis

[(Example)] Stack with MultiPop(int k, Stack S)

37

AVL Trees, Splay Trees, and Amortized Analysis
[(Example)] Stack with MultiPop(int k, Stack S)

D, =
(D) =

37

AVL Trees, Splay Trees, and Amortized Analysis
[(Example)] Stack with MultiPop(int k, Stack S)

D. = the stack that results after the i-th operation

I

(D) =

37

AVL Trees, Splay Trees, and Amortized Analysis
[(Example)] Stack with MultiPop(int k, Stack S)

D. = the stack that results after the i-th operation

I

®(D,) = the number of objects in the stack D,

37

AVL Trees, Splay Trees, and Amortized Analysis
[(Example)] Stack with MultiPop(int k, Stack S)

D. = the stack that results after the i-th operation

I

®(D,) = the number of objects in the stack D,

O(D,)= 0 = D(D,)

37

AVL Trees, Splay Trees, and Amortized Analysis
[(Example)] Stack with MultiPop(int k, Stack S)

D. = the stack that results after the i-th operation

I

®(D,) = the number of objects in the stack D,

B(D,) = 0= B(D,)
Push:

37

AVL Trees, Splay Trees, and Amortized Analysis
[(Example)] Stack with MultiPop(int k, Stack S)

D. = the stack that results after the i-th operation

I

®(D,) = the number of objects in the stack D,

O(D,)=0=D(D,)
Push: o(D,)- d(D._,) = (sizeof (S) + 1) - sizeof (S) = 1

37

AVL Trees, Splay Trees, and Amortized Analysis
[(Example)] Stack with MultiPop(int k, Stack S)

D. = the stack that results after the i-th operation

I

®(D,) = the number of objects in the stack D,

O(D,)= 0 = D(D,)

Push: o(D,)- d(D._,) = (sizeof (S) + 1) - sizeof (S) = 1
m) (=c, +DD,)-DD,)=1+1=2

37

AVL Trees, Splay Trees, and Amortized Analysis
[(Example)] Stack with MultiPop(int k, Stack S)

D. = the stack that results after the i-th operation

I

®(D,) = the number of objects in the stack D,

O(D,)= 0 = D(D,)

Push: o(D,)- d(D._,) = (sizeof (S) + 1) - sizeof (S) = 1
m) (. =c,+D(D,)-DPD,)=1+1=2
Pop:

37

AVL Trees, Splay Trees, and Amortized Analysis
(Example)]] Stack with MultiPop(int k, Stack S)

D. = the stack that results after the i-th operation

I

®(D,) = the number of objects in the stack D,

O(D,)= 0 = D(D,)

Push: o(D,)- d(D._,) = (sizeof (S) + 1) - sizeof (S) = 1
m) (=c, +DD,)-DD,)=1+1=2

Pop: @(D,)- ®(D,_,) = (sizeof (S) - 1) - sizeof (S) = -1

37

AVL Trees, Splay Trees, and Amortized Analysis
(Example)]] Stack with MultiPop(int k, Stack S)

D. = the stack that results after the i-th operation

I

®(D,) = the number of objects in the stack D,

O(D,)= 0 = D(D,)

Push: o(D,)- d(D._,) = (sizeof (S) + 1) - sizeof (S) = 1
m) (=c, +DD,)-DD,)=1+1=2

Pop: @(D,)- ®(D,_,) = (sizeof (S) - 1) - sizeof (S) = -1
m) . =c +DD)-DP(D,)=1-1=0

37

AVL Trees, Splay Trees, and Amortized Analysis
[(Example)] Stack with MultiPop(int k, Stack S)

D. = the stack that results after the i-th operation

I

®(D,) = the number of objects in the stack D,

O(D,)= 0 = D(D,)

Push: o(D,)- d(D._,) = (sizeof (S) + 1) - sizeof (S) = 1
m) (. =c,+DD,)-DO(D,)=1+1=2

POP: @(D,)- ®(D,._,) = (sizeof (S) - 1) - sizeof (S) = -1
m) (=, +D(D,)-DPD,)=1-1=0

MultiPop:

37

AVL Trees, Splay Trees, and Amortized Analysis
(Example)]] Stack with MultiPop(int k, Stack S)

D. = the stack that results after the i-th operation

I

®(D,) = the number of objects in the stack D,

O(D,)= 0 = D(D,)

Push: o(D,)- d(D._,) = (sizeof (S) + 1) - sizeof (S) = 1
m) (=c, +DD,)-DD,)=1+1=2

Pop: @(D,)- ®(D,_,) = (sizeof (S) - 1) - sizeof (S) = -1
m) . =c +DD)-DP(D,)=1-1=0

MultiPop: @(p,)- (D, ,) = (sizeof (S) - k') - sizeof (S) = -k’

37

AVL Trees, Splay Trees, and Amortized Analysis
(Example)]] Stack with MultiPop(int k, Stack S)

D. = the stack that results after the i-th operation

I

®(D,) = the number of objects in the stack D,

(D;)=0=2(D,)
Push: o(D,)- d(D._,) = (sizeof (S) + 1) - sizeof (S) = 1
m) ¢ -c,+DPD,)-DD,)=1+1=2
Pop: @(D,)- ®(D,_,) = (sizeof (S) - 1) - sizeof (S) = -1
m) . -c,+DPD)-DD, ,)=1-1=0
MultiPop: oD,y - d(D,_,) = (sizeof (S) - k') - sizeof (S) = -k’
m)C =-c +DPD,)-D(D,)=k -k'=0

37

AVL Trees, Splay Trees, and Amortized Analysis
(Example)]] Stack with MultiPop(int k, Stack S)

D. = the stack that results after the i-th operation

I

®(D,) = the number of objects in the stack D,

O(D,)= 0 = D(D,)

Push: o(D,)- d(D._,) = (sizeof (S) + 1) - sizeof (S) = 1
m) (=c, +DD,)-DD,)=1+1=2

Pop: @(D,)- ®(D,_,) = (sizeof (S) - 1) - sizeof (S) = -1
m) (=, +D(D,)-DPD,)=1-1=0

MultiPop: - @(p.) - (D, ,) = (sizeof (S) - k') - sizeof (S) = k'
) =c, +OD,)-O(D,)=k -k'=0

n

i ¢, = E 0Q) = O(n)

1=

37

AVL Trees, Splay Trees, and Amortized Analysis
(Example)]] Stack with MultiPop(int k, Stack S)

D. = the stack that results after the i-th operation

I

®(D,) = the number of objects in the stack D,

O(D,)= 0 = D(D,)

Push: o(D,)- d(D._,) = (sizeof (S) + 1) - sizeof (S) = 1
m) (=c, +DD,)-DD,)=1+1=2

Pop: @(D,)- ®(D,_,) = (sizeof (S) - 1) - sizeof (S) = -1
m) (=, +D(D,)-DPD,)=1-1=0

MultiPop: - @(p.) - (D, ,) = (sizeof (S) - k') - sizeof (S) = k'
) =c, +OD,)-O(D,)=k -k'=0

n n

iéi =20(1)=0(n) zzci

i= i=1

37

AVL Trees, Splay Trees, and Amortized Analysis
(Example)]] Stack with MultiPop(int k, Stack S)

D. = the stack that results after the i-th operation

I

®(D,) = the number of objects in the stack D,

O(D,)= 0 = D(D,)

Push: o(D,)- d(D._,) = (sizeof (S) + 1) - sizeof (S) = 1
m) (=c, +DD,)-DD,)=1+1=2

Pop: @(D,)- ®(D,_,) = (sizeof (S) - 1) - sizeof (S) = -1
m) . =c +DD)-DP(D,)=1-1=0

MultiPop: @(p,)- (D, ,) = (sizeof (S) - k') - sizeof (S) = -k’
)i =c,+D(D)-D(D,) =k'-k'=0

n

2@- = 2 o) =0(n) = 20,- T O(n)n=O(1)

1= 1=

37

Analysis of Splay Trees

¢ What we want to bound?

® The amortized cost of a sequence of operations, e.g. search,
delete, insert, split...

® Each operation involves slaying: a subsequence of rotations.

® The potential function is built on a state of tree. Let’s consider the
amortized cost of sequence of rotations first.

rotation rotation
—_— —_—
®1 O2

rotation
_> [N N]

3

38

39

[(Example)] Splay Trees:

T

amortized

=0O(log N)

39

[(Example)] Splay Trees:

D, =
(D) =

T

amortized

=0O(log N)

39

[(Example)] Splay Trees: T

amortized

=0O(log N)

D, = the root of the resulting tree

(D) =

39

[(Example)] Splay Trees: T

=0O(log N)

amortized

D, = the root of the resulting tree

(D) =

must increase by at most O(log N) over n steps, AND will also
cancel out the number of rotations (zig:|; zig-zag:2; zig-zig:2).

39

[(Example)] Splay Trees: T

=0O(log N)

amortized

D, = the root of the resulting tree

(D) =

must increase by at most O(log N) over n steps, AND will also
cancel out the number of rotations (zig:|; zig-zag:2; zig-zig:2).

O(T) = E log S(i) where S(i) is the number of descendants of
er

i (i included).

39

[(Example)] Splay Trees: T

amortized

=0O(log N)

D, = the root of the resulting tree

must increase by at most O(log N) over n steps, AND will also

O(D;) = cancel out the number of rotations (zig:|; zig-zag:2; zig-zig:2).

d(T) = E log S(i) where $(i) is the number of descendants of

A i (i included).

Rank of the subtree
= Height of the tree

39

[(Example)] Splay Trees: T

amortized

=0O(log N)

D, = the root of the resulting tree

must increase by at most O(log N) over n steps, AND will also

O(D;) = cancel out the number of rotations (zig:|; zig-zag:2; zig-zig:2).

d(T) = E log S(i) where $(i) is the number of descendants of

A i (i included).

Rank of the subtree
= Height of the tree

Why not simply use the heights
of the trees?

39

Zig

O(T) = E Rank (i)

Single rotation K@)
2 x

Double rotation
[P\ m—

40

O(T) = E Rank(i)

Zig % K@) & =1+ R,(X)-R,(X)
Single rotatio
+ R,(P)- R,(P)
/<®§\ %\ <1+ R,(X)- R,(X)
Zig-zag
D uble rotation §®%>\
Zﬁ N

A@x

O(T) = E Rank (i)

ieT

| | ¢; =1+ R, (X)- R/(X)
Single rotation
- %5\ +R2(P)—R1(P)
B C

<1+ R,(X)-R,(X)

Double rotation
A L
4 B C D

40

D(T) = E Rank (i)

ieT

| | K@) ¢ =1+ R,(X) - R,(X)
Single rotation
B & =

A< <1+ R,(X)- R, (X)

Zig-zag c.=2+R,(X)-R,(X
=2+ -
2 Double rotation " R2 E P)) R 1((P))
+ 2 - 1

L
/< /< + Rz (G) - Rl (G)
< AN LN LN LN <R, (X)- R(X))

Zig-zig ON

- A

Zig

40

O(T) = E Rank (i)

ieT

| | ¢; =1+ R, (X)- R/(X)
Single rotation
- %5\ +R2(P)—R1(P)
B C

<1+ R,(X)-R,(X)

¢ = 24 BAK) - R (X)

+R,(P)- R,(P)
+ Ry(G) - RAG)
< 2(R,(X)- R,(X))

40

O(T) = E Rank(i)

ieT

¢, =1+ R,(X)- R,(X)
Slngle rotation
%\ + R(P)- R,(P)
C

<1+ R,(X)-R,(X)

Double rotation 8 2+ &(f)
+R ,(G) - R)
< 2(R,(X)- R,(X))

40

O(T) = E Rank (i)

ieT

=1+ R,(X) - R,(X)
+R,(P)- R (P)
=1+ R, (X) - R, (X)

2+1y(§) R,(X)

+R,(P)- R, (P)

 R(G)- RAC)

< 2(R,(X) - R(X))
Lemma | 1.4 on [Weiss] p.448

Slngle rotation

40

O(T) = 2 Rank (i)

ieT

=1+ R,(X)- R, (X)
Slngle rotation
%\ + R,(P)- R,(P)
C

=1+ R,(X)-R,/(X)

Double rotation =2+ &(’()-R (X
+R ,(G) - R)
< 2(R,(X) - R/(X))

Lemma | 1.4 on [Weiss] p.448

=2+ R,(X)- R, (X)
+R,(P)- R, (P)
+ R,(G)- R,(G)
=< 3(R,(X)- R,(X))

40

O(T) = E Rank (i)

ieT

¢, =1+ Ry(X)- R,(X)
+ Ry(P)- R(P)
/B\ A =1+ R,(X)- R,(X)

2+1y(§) R,(X)

+R,(P)- R, (P)

 R(G)- RAC)

< 2(R,(X) - R(X))
Lemma | 1.4 on [Weiss] p.448

Slngle rotation

& =2+ R,(X)- R,(X)
2 + R,(P)- R,(P)

/N KO + R,(G) - R,(G)
AN <300 R0)

40

O(T) = E Rank (i)

ieT

% K@) =1+ R,(X)- R,(X)
Single rotation

+R,(P)-R,(P)
@é\ 2@2\ =1+ R,(X)- R,(X)

Zig-zag

e

A <1+3(R (X)-R/(X)) |

+R,(P)- R,(P)
 R(G)- RAC)
= 2(R,(X) - R (X))
Lemma | 1.4 on [Weiss] p.448

@&:Z A@l\ ¢, =2+R,(X)-R,(X)

+ R,(P)- R,(P)
/<Q(I Single rotation A @ + R,(G)- R.(G)
4 B C A <3(R,(X)- R,(X))

40

Zig-zig

O(T) = E Rank(i)

ieT

¢, =1+ R,(X)- R,(X)
Slngle rotation
%\ + R(P)- R,(P)
C

<1+ R,(X)-R,(X)

¢ = 24 RAK) - Ry(X)

+R,(P)- R,(P)

+ Ry(G) - RG)
= 2(R,(X) - R (X))
Lemma | 1.4 on [Weiss] p.448

- 2+ R,(X)- R,(X)
+ R,(P)- R,(P)

)\ +R,(G)- R, (G)

D\ =3(R,(X)-R/(X))

[Lemma] The total cost of > ¢ to splay a tree by a series of rotations
with root T at node X isat most 3(R(T)—-R (X)) + I. 40

Amortized Cost of Splay Trees

[Lemma] The total cost of Y & to splay a tree by a series of rotations
with root T at node Xisat most 3(R(T)—-R (X)) + I.

41

Amortized Cost of Splay Trees

[Lemma] The total cost of Y & to splay a tree by a series of rotations
with root T at node Xisat most 3(R(T)—-R (X)) + I.

S =3+ o)-0d,)

1=

_ (ici)Jr o(D,) - (D,)

=1 >0

41

Amortized Cost of Splay Trees

[Lemma] The total cost of Y & to splay a tree by a series of rotations
with root T at node Xisat most 3(R(T)—-R (X)) + I.

S =3+ o)-0d,)

= Should assume

n to start from

+ (I)(Dn) — (I)(Do) an empty tree
=1

> ()

41

Amortized Cost of Splay Trees

[Lemma] The total cost of Y & to splay a tree by a series of rotations
with root T at node Xisat most 3(R(T)—-R (X)) + I.

E 61‘ = E (ci +P(D;) - (I)(Di—l))
=1 =1 Should assume
n to start from
= E c;, |+ (I)(Dn) — (I)(DO) an empty tree
=1 >0

We should also consider the influences of other steps other than rotations
on the potential functions.
Fortunately, their influences are minor.

41

Amortized Cost of Splay Trees

[Lemma] The total cost of Y & to splay a tree by a series of rotations
with root T at node Xisat most 3(R(T)—-R (X)) + I.

. . bounded by log(N)
Yé =Y (e + @) -0(D,,))

=1 =1 Should assume
n to start from
= E c;, |+ (I)(Dn) — (I)(Do) an empty tree
=1
> ()

We should also consider the influences of other steps other than rotations
on the potential functions.
Fortunately, their influences are minor.

Theorem:

The amortized cost of a series of operations started from an empty splay
tree is of order O(log N), where N is the number of all nodes involved in
the operations.

Read the original splay tree paper for details.

41

Balanced Binary Search Trees (1)

® Take-home messages

42

Take-Home Messages

Balanced binary search trees:

® Reduce depth to reduce cost of operations.

AVL trees:

¢ Satisfying height-balanced condition. Conduct rotations to achieve

self-balancing once the condition is violated.
Splay trees:

® Achieving self-balancing by conducting splaying steps for any
operations.

Amortized analysis:

® Averaging the total cost which is limited by the structure.

43

44

Reference

Data Structure and Algorithm Analysis in C (2nd Edition): Chap.4.4-4.5, | |.5.

Introduction to Algorithms (4th Edition): Chap. 6.

Daniel Dominic Sleator, Robert Endre Tarjan:
Self-Adjusting Binary Search Trees. Journal of ACM 32(3): 652-686 (1985)

45

