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® dynamic means the set can change.

® can be ordered or unordered.

® Data structures are abstractions: supporting group of operations:
® queries:
® search, minimum, maximum, successor, predecessor...
® modifying operations:

® insert, delete...

e A proper data structure effectively speeds up the set operations.

in terms of the size of the DS
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Binary Search Trees (BSTs)

® Every node has at most two children.
® The left child is smaller, and the right child is larger.

® The tree operations (search, insert, delete, minimum, maximum,
successor, predecessor...) have time costs closely related to tree depth.

¢ Balancing is to reduce tree depth in order to reduce time costs.

Figure courtesy: https://en.wikipedia.org/wiki/Binary_search_tree
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Balanced BSTs

@ Tal"get . Speed up searching (with insertion and deletion)

w\ Tool : Binary search trees
Csmaller >

R
ll Problem : Aithough T, = O( height ), but the height can be as

bad as O( N).
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[(Example)] 2 binary search trees obtained for the months of the year

Average search time = 3.5

Average search time of
the skew tree = 6.5

A balanced tree
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Why Not Use Complete BST?

The constraint is too strong.
BST needs to preserve instance order,
every operation involves global tuning of the structure.
We should relax the constraint.



Outline:
Balanced Binary Search Trees (1)

o AVL trees



Adelson-Velskii-Landis (AVL) Trees (1962)

® Self-balanced trees which dynamically modifies tree structure to keep
the tree balanced during operations.

Figure courtesy: https://www.chessprogramming.org/Georgy_Adelson-Velsky 0
https://en.wikipedia.org/wiki/Evgenii_Landis
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Adelson-Velskii-Landis (AVL) Trees (1962)

Figure courtesy: https://www.chessprogramming.org/Georgy Adelson-Velsky
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AVL Trees

[Definition] An empty binary tree is height-balanced. If T is a nonempty binary
tree with T, and T, as its left and right subtrees, then T is height-balanced iff

(I) T, and T; are height balanced, and
(2) | h, — hg | = | where h, and h; are the heights of T, and T, , respectively.
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[(Example)] Input the months

0

Single rotation m
[

0 0

CMar > CNov >

O The trouble maker Nov is in the right subtree’s right subtree of the trouble

finder Mar. Hence it is called an RR rotation.

A is not necessarily
the root of the tree

In general:

0
RR
- RR 0 @
Insertion —-
Rotation e
AL
B, Ap Bp
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What can we do now!?
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2 Double Rotation

Rotation
Oorl
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In general:
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Note: Several bf’s
might be changed even if
we don’t need to reconstruct

the tree.

17



Note: Several bf’s
might be changed even if
we don’t need to reconstruct

the tree.

Another option is to keep a height field for each node.

17



Note: Several bf’s
might be changed even if
we don’t need to reconstruct

the tree.

Another option is to keep a height field for each node.

[ Read the declaration and functions in [Weiss] Figures 4.42 — 4.48
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One last question:
Obviously we have T, = O(h)

where h is the height of the tree.
But h =




Let n, be the minimum number of nodes in a height-balanced tree of

height h. What does the tree look like!?
The worst case for AVL tree of height h.
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Let n, be the minimum number of nodes in a height-balanced tree of
height h. What does the tree look like!?

@ @ The worst case for AVL tree of height h.

h-2 h-1 OR h-1 h=2 = n,=n,_ tn,,+1

Fibonacci number theory gives that F ~ 1 ( 1+ \/g)

. 5l 2
1(1+J§"3

n, = -1 = h=0(nn
=2 ) (Inn)
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Splay Trees (1985)

Daniel Sleator Robert Tarj an
Self-Adjusting Binary Search Trees

DANIEL DOMINIC SLEATOR AND ROBERT ENDRE TARJAN

AT&T Bell Laboratories, Murray Hill, NJ

Figure courtesy: https://csd.cmu.edu/people/faculty/daniel-sleator
https://en.wikipedia.org/wiki/Robert_Tarjan
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Splay Trees

Tal'gEt e Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

So a single operation might
still take O(N) time!?
Then what’s the point!?

No. It means that the
amortized time is O(log N).
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Splay Trees

Tar'get e Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

The bound is weaker. ‘0 a single operation might
But the effect is the same: still take O(N) time!?
There are no bad input sequences. .en what’s the point?
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Splay Trees

Tar'get e Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

Surely we can — that only means
that whenever a node is accessed, : if one node takes O(N) time
it must be moved. Otherwise visiting a ess, we can keep accessing it
bad node repeatedly leads to bad performance .or M times, can’t we!
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Splay Trees

Tal'get e Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

Surely we can — that only means
that whenever a node is accessed, : if one node takes O(N) time
it must be moved. Otherwise visiting a ess, we can keep accessing it
bad node repeatedly leads to bad performance .or M times, can’t we!

Idea : After a node is accessed, it is pushed to the root by a
\ series of AVL tree rotations.

21
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Does NOT work!

The rotation pushes other nodes deeper



23



An even worse case:

23



An even worse case:

23



An even worse case:

23



An even worse case:

23



An even worse case:

23



An even worse case:

23



An even worse case:

Insert: 1,2,3,... N

23



An even worse case:

Insert: 1,2,3,... N

23



An even worse case:

Insert: 1,2,3,... N

Find: |

23



An even worse case:

Insert: 1,2,3,... N

Find: |

23



An even worse case:

Insert: 1,2,3,... N

Find: 2

Find: |

23



An even worse case:

Insert: 1,2,3,... N

Find: 2

Find: |

23



An even worse case:

Insert: 1,2,3,... N

Find: 2

Find: |

23



An even worse case:

Insert: 1,2,3,... N

Find: 2

Find: |

23



An even worse case:

Insert: 1,2,3,... N ﬂ) Find: | G&

Find:2  (B) e Find: N /Q\f)

@/ T(N)= O(N2)
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Try again -- For any nonroot node X, denote its parent by P and grandparent
by G :
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Zig

Try again -- For any nonroot node X, denote its parent by P and grandparent
by G :

Case |: Pis the root ==mp Rotate X andP

Case 2: P is not the root

Zig-zag

Double rotation

Single rotation

——
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Zig

Try again -- For any nonroot node X, denote its parent by P and grandparent
by G :

Case |: Pis the root ==mp Rotate X andP

Case 2: P is not the root

Zig-zag

Double rotation
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Compare the Zig-zig case:




Compare the Zig-zig case:

fﬁ% - {A

@Q — 4‘1@

A5

12

For zig-zig case, the right child of the node on splaying always goes deep.

The key is to make it go slower.
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Splaying not only moves the accessed
node to the root, but also roughly halves
the depth of most nodes on the path.
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Insert: |,2,3,4,5,6,7 Find: |

PP P9
g g R
Foog g go
goog r 4o
Food g

Read the 32-node example given
in [Weiss] Figures 4.52 — 4.60
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Deletions: X will be at the root
due to splaying.
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subtrees T, and T;.

Sh Step 2: Remove X ;

The largest element
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and has no right child.
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Operations on Splay Trees

Deletions: X will be at the root
due to splaying.
I~ Step I: Find X ;

There will be two
subtrees T, and T;.

Sh Step 2: Remove X ;

The largest element
will be the root of T,

and has no right child.

IS~ Step 3: FindMax (T, ) ;

IS~ Step 4: Make Ty the right child of the root of T, .

28



Operations on Splay Trees

Join(tl, t2): % JAN E‘i?.y. AD AN ﬁ

f2 ot
v B Far
| 2 |

Insert(i, t): /\ Ep—hl N N\ — S Z

t

Delete(i, t): iy & — A A T

All operations involve a series of splay steps.
Check the details in the “Self-adjusting binary search trees” paper.
Next, we study the complexity of splay tree operations.

Split(i, t):
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Amortized Analysis

Target . Any M consecutive operations take at most O(M log N) time.

-- Amortized time bound

worst-case bound = amortized bound = average-case bound

Probability
is not involved

<3 Aggregate analysis
S Accounting method

& Potential method
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ldea : Show that for all n,a sequence of n operations takes worst-

case time T(n) in total. In the worst case, the average cost,
or amortized cost, per operation is therefore T(n)/n.
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: case time T(n) in total. In the worst case, the average cost,
\/ or amortized cost, per operation is therefore T(n)/n.
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[(Example]] Stack with MultiPop( int k, Stack S )

Consider a sequence of [/Push, Pop,

Algorithm { : - o
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Aggregate Method

ldea : Show that for all n,a sequence of n operations takes worst-

: case time T(n) in total. In the worst case, the average cost,
\/ ration is therefore T(n)/n.

We can pop each object
from the stack at most once for each
time we have pushed it
onto the stack

[(Example]] Stack wi tack S)

Total = O( n2)?

onsider a sequence of /Push, Pop,

A|g0rl.thm { amd MultiPop operations on an initially
while (!IsEmpty(S) && k>0) { empty stack
Pop(S); PH .
k--

} I* end while-loop */

} T = min ( SiZeOf(S), k )
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ldea : Show that for all n,a sequence of n operations takes worst-

: case time T(n) in total. In the worst case, the average cost,
\/ ration is therefore T(n)/n.

We can pop each object
from the stack at most once for each
time we have pushed it
onto the stack

Total = O( n2)?

[(Example]] Stack wi tack S)
_ onsider a sequence of /Push, Pop,
ST amd MultiPop operatios on an initiall
while ( 11sEmpty(S) && k>0 ) { etk P op Y
Pop(S); PrY SRt
k- -

} I* end while-loop */

} T = min ( SiZeOf(S), k )

sizeof(S) < n

T =0(n)/n=0(l)

amortized
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ldea : Show that for all n,a sequence of n operations takes worst-

: case time T(n) in total. In the worst case, the average cost,
\/ ration is therefore T(n)/n.

We can pop each object
from the stack at most once for each
time we have pushed it
onto the stack

[(Example]] Stack wi tack S)

Total = O( n2)?

onsider a sequence of /Push, Pop,

Algorl.thm { amd MultiPop operations on an initially
while (!IsEmpty(S) && k>0) { empty stack
Pop(S); PH .
k--

} I* end while-loop */

} T = min ( SiZeOf(S), k )

sizeof(S) < n

T =0(n)/n=0(l)

amortized

The total time of pop should be less than the total time of push.

The total time of push takes at most O(n). 32



Accounting Method



Accounting Method

A
ldea : Whenan operation’s amortized cost C;

\ ' exceeds its actual cost C;,we assign the
/ difference to specific objects in the data
structure as credit. Credit can help pay
for later operations whose amortized
cost is less than their actual cost.
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exceeds its actual cost C;,we assign the
difference to specific objects in the data
structure as credit. Credit can help pay
for later operations whose amortized
cost is less than their actual cost.

Note: For all sequences of n operations, we must have

n n
Se=3e
=1 =1
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[(Example]] Stack with MultiPop( int k, Stack S )
¢; for Push: 1; Pop: 1; and MultiPop: min ( sizeof(S), k)

¢; for Push: 2 ;Pop: 0; and MultiPop: 0

Starting from an empty stack Credits for
Push: +I ;Pop: -1 ;and MultiPop: -1 for each +I
sizeof(S) =0 WP Credits = 0
n ) n
mp O(n)= Eci > Ecl
=1 =1

- Tamortized= O( n )/n = O(I)
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[(Example]] Stack with MultiPop( int k, Stack S )
¢; for Push: 1; Pop: 1; and MultiPop: min ( sizeof(S), k)

¢; for Push: 2 ;Pop: 0; and MultiPop: 0

Starting from a

Push: +1 ;Pop: —

The amortized
costs of the operations
may differ from
each other

- Tamortized= O( n )/n = O(I)

34



Potential Method

®* Why some problems have smaller amortized time cost?

® The structure of the problem provides the constraints:

® Represent the states of the structure as potential functions.
® The potential function is bounded by the structural constraints.

® Bound the total cost by the increase of potential.
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Potential Method

®* Why some problems have smaller amortized time cost?

® The structure of the problem provides the constraints:
All operations can not exceed the structural constraints.
® Represent the states of the structure as potential functions.

® The potential function is bounded by the structural constraints.

® Bound the total cost by the increase of potential.
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Eﬁalﬂln@

n

Yeé - E (¢, + D(D,))- (D, ,))

=1 1
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Idea = Take a closer look at the credit --

\/ ¢, —c, = Credit, = D(D,)- D(D,_,)

= Potential funD
N é =N (e +®(D)- (D))
=1 =1

=(ic,.)+<1>(1),,)—<1>(1)0)

1=1 > 0

In general, a good potential function should always assume its minimum at
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\/ ¢, —c, = Credit, = D(D,)- D(D,_,)

= Potential funD
N é =N (e +®(D)- (D))
=1 =1

= Y |+ 2(D,)-D(D,)

=1 / >0

Should be bounded.

In general, a good potential function should always assume its minimum at

the start of the sequence.
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n
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Analysis of Splay Trees

¢ What we want to bound?

® The amortized cost of a sequence of operations, e.g. search,
delete, insert, split...

® Each operation involves slaying: a subsequence of rotations.

® The potential function is built on a state of tree. Let’s consider the
amortized cost of sequence of rotations first.

rotation rotation
—_— —_—
®1 O2

rotation
_> [ N N ]

3
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[(Example)] Splay Trees: T

amortized

=0O(log N)

D, = the root of the resulting tree

must increase by at most O( log N ) over n steps, AND will also

O(D;) = cancel out the number of rotations (zig:|; zig-zag:2; zig-zig:2).

d(T) = E log S(i) where $(i) is the number of descendants of

A i (i included).

Rank of the subtree
= Height of the tree

Why not simply use the heights
of the trees?
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O(T) = E Rank (i)

Single rotation K@)
2 x

Double rotation
[P\ m—
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O(T) = E Rank(i)

Zig % K@) & =1+ R,(X)-R,(X)
Single rotatio
+ R,(P)- R,(P)
/<®§\ %\ <1+ R,(X)- R,(X)
Zig-zag
D uble rotation §®%>\
Zﬁ N

A@x




O(T) = E Rank (i)

ieT

| | ¢; =1+ R, (X)- R/(X)
Single rotation
- %5\ +R2(P)—R1(P)
B C

<1+ R,(X)-R,(X)

Double rotation
A L
4 B C D
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D(T) = E Rank (i)

ieT

| | K@) ¢ =1+ R,(X) - R,(X)
Single rotation
B & =

A< <1+ R,(X)- R, (X)

Zig-zag c.=2+R,(X)-R,(X
=2+ -
2 Double rotation " R2 E P)) R 1((P))
+ 2 - 1

L
/< /< + Rz (G) - Rl (G)
< AN LN LN LN <R, (X)- R(X))

Zig-zig ON

- A

Zig
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2+1y(§) R,(X)
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 R(G)- RAC)

< 2(R,(X) - R(X))
Lemma | 1.4 on [Weiss] p.448

Slngle rotation
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O(T) = E Rank(i)

ieT

¢, =1+ R,(X)- R,(X)
Slngle rotation
%\ + R(P)- R,(P)
C

<1+ R,(X)-R,(X)

¢ = 24 RAK) - Ry(X)

+R,(P)- R,(P)

+ Ry(G) - RG)
= 2(R,(X) - R (X))
Lemma | 1.4 on [Weiss] p.448

- 2+ R,(X)- R,(X)
+ R,(P)- R,(P)

)\ +R,(G)- R, (G)

D\ =3(R,(X)-R/(X))

[Lemma] The total cost of > ¢ to splay a tree by a series of rotations
with root T at node X isat most 3(R(T)—-R (X)) + I. 40




Amortized Cost of Splay Trees

[Lemma] The total cost of Y & to splay a tree by a series of rotations
with root T at node Xisat most 3(R(T)—-R (X)) + I.
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1=

_ (ici)Jr o(D,) - (D,)
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[Lemma] The total cost of Y & to splay a tree by a series of rotations
with root T at node Xisat most 3(R(T)—-R (X)) + I.

S =3+ o)-0d,)

= Should assume
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=1
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Amortized Cost of Splay Trees

[Lemma] The total cost of Y & to splay a tree by a series of rotations
with root T at node Xisat most 3(R(T)—-R (X)) + I.

E 61‘ = E (ci +P(D;) - (I)(Di—l))
=1 =1 Should assume
n to start from
= E c;, |+ (I)(Dn) — (I)(DO) an empty tree
=1 >0

We should also consider the influences of other steps other than rotations
on the potential functions.
Fortunately, their influences are minor.
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Amortized Cost of Splay Trees

[Lemma] The total cost of Y & to splay a tree by a series of rotations
with root T at node Xisat most 3(R(T)—-R (X)) + I.

. . bounded by log(N)
Yé =Y (e + @) -0(D,,))

=1 =1 Should assume
n to start from
= E c;, |+ (I)(Dn) — (I)(Do) an empty tree
=1
> ()

We should also consider the influences of other steps other than rotations
on the potential functions.
Fortunately, their influences are minor.

Theorem:

The amortized cost of a series of operations started from an empty splay
tree is of order O(log N), where N is the number of all nodes involved in
the operations.

Read the original splay tree paper for details.
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Balanced Binary Search Trees (1)

® Take-home messages
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Take-Home Messages

Balanced binary search trees:

® Reduce depth to reduce cost of operations.

AVL trees:

¢ Satisfying height-balanced condition. Conduct rotations to achieve

self-balancing once the condition is violated.
Splay trees:

® Achieving self-balancing by conducting splaying steps for any
operations.

Amortized analysis:

® Averaging the total cost which is limited by the structure.
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