
Advanced Data Structures
and Algorithm Analysis

丁尧相

浙江⼤学

Spring & Summer 2024
Lecture 1
2024-2-26

Outline:
Balanced Binary Search Trees (1)

2

• Binary search trees

• AVL trees

• Splay trees

• Amortized analysis

• Take-home messages

Acknowledgements:
This lecture is adapted from the slides designed by

Prof. Yue Chen and the ZJU ADS course group.

Outline:
Balanced Binary Search Trees (1)

3

• Binary search trees

• AVL trees

• Splay trees

• Amortized analysis

• Take-home messages

Acknowledgements:
This lecture is adapted from the slides designed by

Prof. Yue Chen and the ZJU ADS course group.

4

Data Structures
• Data structures represent dynamic sets of instances.

• dynamic means the set can change.

• can be ordered or unordered.

4

Data Structures
• Data structures represent dynamic sets of instances.

• dynamic means the set can change.

• can be ordered or unordered.

• Data structures are abstractions: supporting group of operations:

• queries:

• search, minimum, maximum, successor, predecessor…

• modifying operations:

• insert, delete…

4

Data Structures
• Data structures represent dynamic sets of instances.

• dynamic means the set can change.

• can be ordered or unordered.

• Data structures are abstractions: supporting group of operations:

• queries:

• search, minimum, maximum, successor, predecessor…

• modifying operations:

• insert, delete…

• A proper data structure effectively speeds up the set operations.

in terms of the size of the DS

5

Binary Search Trees (BSTs)

• Every node has at most two children.

Figure courtesy: https://en.wikipedia.org/wiki/Binary_search_tree

https://en.wikipedia.org/wiki/Binary_search_tree

5

Binary Search Trees (BSTs)

• Every node has at most two children.

• The left child is smaller, and the right child is larger.

Figure courtesy: https://en.wikipedia.org/wiki/Binary_search_tree

https://en.wikipedia.org/wiki/Binary_search_tree

5

Binary Search Trees (BSTs)

• Every node has at most two children.

• The left child is smaller, and the right child is larger.

• The tree operations (search, insert, delete, minimum, maximum,
successor, predecessor…) have time costs closely related to tree depth.

Figure courtesy: https://en.wikipedia.org/wiki/Binary_search_tree

https://en.wikipedia.org/wiki/Binary_search_tree

5

Binary Search Trees (BSTs)

• Every node has at most two children.

• The left child is smaller, and the right child is larger.

• The tree operations (search, insert, delete, minimum, maximum,
successor, predecessor…) have time costs closely related to tree depth.

• Balancing is to reduce tree depth in order to reduce time costs.

Figure courtesy: https://en.wikipedia.org/wiki/Binary_search_tree

https://en.wikipedia.org/wiki/Binary_search_tree

6

Balanced BSTs

6

Target : Speed up searching (with insertion and deletion)

Balanced BSTs

6

Target : Speed up searching (with insertion and deletion)

Tool : Binary search trees
root

smaller larger

Balanced BSTs

6

Target : Speed up searching (with insertion and deletion)

Tool : Binary search trees
root

smaller larger

Problem : Although Tp = O(height), but the height can be as
bad as O(N).

Balanced BSTs

7

7

〖Example〗 2 binary search trees obtained for the months of the year

7

〖Example〗 2 binary search trees obtained for the months of the year

Nov

Oct

Sept

May

Mar

June

July

Dec

Aug

Apr

Feb

Jan

Entered from Jan to Dec

7

〖Example〗 2 binary search trees obtained for the months of the year

Nov

Oct

Sept

May

Mar

June

July

Dec

Aug

Apr

Feb

Jan

July

June

Mar

May

Oct

SeptNov

Jan

Feb

Aug

Apr Dec

Entered from Jan to Dec

A balanced tree

7

〖Example〗 2 binary search trees obtained for the months of the year

Nov

Oct

Sept

May

Mar

June

July

Dec

Aug

Apr

Feb

Jan

July

June

Mar

May

Oct

SeptNov

Jan

Feb

Aug

Apr Dec

Entered from Jan to Dec

A balanced tree

Average search time = 3.5

7

〖Example〗 2 binary search trees obtained for the months of the year

Nov

Oct

Sept

May

Mar

June

July

Dec

Aug

Apr

Feb

Jan

July

June

Mar

May

Oct

SeptNov

Jan

Feb

Aug

Apr Dec

Entered from Jan to Dec

A balanced tree

Average search time = 3.5

Average search time = 3.1

7

〖Example〗 2 binary search trees obtained for the months of the year

Nov

Oct

Sept

May

Mar

June

July

Dec

Aug

Apr

Feb

Jan

July

June

Mar

May

Oct

SeptNov

Jan

Feb

Aug

Apr Dec

Entered from Jan to Dec

A balanced tree

Average search time = 3.5

Average search time = 3.1

Average search time of
the skew tree = 6.5

8

Why Not Use Complete BST?

8

Why Not Use Complete BST?

The constraint is too strong.
BST needs to preserve instance order,

every operation involves global tuning of the structure.
We should relax the constraint.

Outline:
Balanced Binary Search Trees (1)

9

• Binary search trees

• AVL trees

• Splay trees

• Amortized analysis

• Take-home messages

10

Adelson-Velskii-Landis (AVL) Trees (1962)

• Self-balanced trees which dynamically modifies tree structure to keep
the tree balanced during operations.

Figure courtesy: https://www.chessprogramming.org/Georgy_Adelson-Velsky

https://en.wikipedia.org/wiki/Evgenii_Landis

https://www.chessprogramming.org/Georgy_Adelson-Velsky
https://en.wikipedia.org/wiki/Evgenii_Landis

11

Adelson-Velskii-Landis (AVL) Trees (1962)

Figure courtesy: https://www.chessprogramming.org/Georgy_Adelson-Velsky

AVL Trees

12

【Definition】An empty binary tree is height-balanced. If T is a nonempty binary
tree with TL and TR as its left and right subtrees, then T is height-balanced iff

 (1) TL and TR are height balanced, and
 (2) | hL − hR | ≤ 1 where hL and hR are the heights of TL and TR , respectively.

AVL Trees

12

【Definition】An empty binary tree is height-balanced. If T is a nonempty binary
tree with TL and TR as its left and right subtrees, then T is height-balanced iff

 (1) TL and TR are height balanced, and
 (2) | hL − hR | ≤ 1 where hL and hR are the heights of TL and TR , respectively.

The height of an empty tree
is defined to be –1.

AVL Trees

12

【Definition】An empty binary tree is height-balanced. If T is a nonempty binary
tree with TL and TR as its left and right subtrees, then T is height-balanced iff

 (1) TL and TR are height balanced, and
 (2) | hL − hR | ≤ 1 where hL and hR are the heights of TL and TR , respectively.

【Definition, AVL tree】The balance factor BF(node) = hL − hR . In an AVL tree,
BF(node) = −1, 0, or 1.

The height of an empty tree
is defined to be –1.

AVL Trees

12

【Definition】An empty binary tree is height-balanced. If T is a nonempty binary
tree with TL and TR as its left and right subtrees, then T is height-balanced iff

 (1) TL and TR are height balanced, and
 (2) | hL − hR | ≤ 1 where hL and hR are the heights of TL and TR , respectively.

【Definition, AVL tree】The balance factor BF(node) = hL − hR . In an AVL tree,
BF(node) = −1, 0, or 1.

5

82

1 4

3

7

7

82

1 4

3 5

4

5

6

3

2

1 7

The height of an empty tree
is defined to be –1.

AVL Trees

12

【Definition】An empty binary tree is height-balanced. If T is a nonempty binary
tree with TL and TR as its left and right subtrees, then T is height-balanced iff

 (1) TL and TR are height balanced, and
 (2) | hL − hR | ≤ 1 where hL and hR are the heights of TL and TR , respectively.

【Definition, AVL tree】The balance factor BF(node) = hL − hR . In an AVL tree,
BF(node) = −1, 0, or 1.

5

82

1 4

3

7

7

82

1 4

3 5

4

5

6

3

2

1 7

The height of an empty tree
is defined to be –1.

AVL Trees

12

【Definition】An empty binary tree is height-balanced. If T is a nonempty binary
tree with TL and TR as its left and right subtrees, then T is height-balanced iff

 (1) TL and TR are height balanced, and
 (2) | hL − hR | ≤ 1 where hL and hR are the heights of TL and TR , respectively.

【Definition, AVL tree】The balance factor BF(node) = hL − hR . In an AVL tree,
BF(node) = −1, 0, or 1.

5

82

1 4

3

7

7

82

1 4

3 5

4

5

6

3

2

1 7

The height of an empty tree
is defined to be –1.

AVL Trees

12

【Definition】An empty binary tree is height-balanced. If T is a nonempty binary
tree with TL and TR as its left and right subtrees, then T is height-balanced iff

 (1) TL and TR are height balanced, and
 (2) | hL − hR | ≤ 1 where hL and hR are the heights of TL and TR , respectively.

【Definition, AVL tree】The balance factor BF(node) = hL − hR . In an AVL tree,
BF(node) = −1, 0, or 1.

5

82

1 4

3

7

7

82

1 4

3 5

4

5

6

3

2

1 7

The height of an empty tree
is defined to be –1.

13

13

〖Example〗 Input the months

13

〖Example〗 Input the months Mar

Mar
0

13

〖Example〗 Input the months Mar

Mar
0−1

May

May
0

13

〖Example〗 Input the months Mar

Mar
0−1

May

May
0

Nov

Nov
0

−1

−2

13

〖Example〗 Input the months Mar

Mar
0−1

May

May
0

Nov

Nov
0

−1

−2

13

〖Example〗 Input the months Mar

Mar
0−1

May

May
0

Nov

Nov
0

−1

−2

May
0−1

Nov
00

−2−1

Mar
00

0
Single rotation

13

〖Example〗 Input the months Mar

Mar
0−1

May

May
0

Nov

Nov
0

−1

−2

May
0−1

Nov
00

−2−1

Mar
00

0

 The trouble maker Nov is in the right subtree’s right subtree of the trouble

finder Mar. Hence it is called an RR rotation.

Single rotation

13

〖Example〗 Input the months Mar

Mar
0−1

May

May
0

Nov

Nov
0

−1

−2

May
0−1

Nov
00

−2−1

Mar
00

0

 The trouble maker Nov is in the right subtree’s right subtree of the trouble

finder Mar. Hence it is called an RR rotation.

In general:

Single rotation

13

〖Example〗 Input the months Mar

Mar
0−1

May

May
0

Nov

Nov
0

−1

−2

May
0−1

Nov
00

−2−1

Mar
00

0

 The trouble maker Nov is in the right subtree’s right subtree of the trouble

finder Mar. Hence it is called an RR rotation.

In general:

A
−1

B
0

BL BR

AL

Single rotation

13

〖Example〗 Input the months Mar

Mar
0−1

May

May
0

Nov

Nov
0

−1

−2

May
0−1

Nov
00

−2−1

Mar
00

0

 The trouble maker Nov is in the right subtree’s right subtree of the trouble

finder Mar. Hence it is called an RR rotation.

In general:

A
−1

B
0

BL BR

AL

RR

Insertion
A
−2

B
−1

BL BR

AL

Single rotation

13

〖Example〗 Input the months Mar

Mar
0−1

May

May
0

Nov

Nov
0

−1

−2

May
0−1

Nov
00

−2−1

Mar
00

0

 The trouble maker Nov is in the right subtree’s right subtree of the trouble

finder Mar. Hence it is called an RR rotation.

In general:

A
−1

B
0

BL BR

AL

RR

Insertion
RR

Rotation

A
−2

B
−1

BL BR

AL

B
0

A

AL

BR

Single rotation

13

〖Example〗 Input the months Mar

Mar
0−1

May

May
0

Nov

Nov
0

−1

−2

May
0−1

Nov
00

−2−1

Mar
00

0

 The trouble maker Nov is in the right subtree’s right subtree of the trouble

finder Mar. Hence it is called an RR rotation.

In general:

A
−1

B
0

BL BR

AL

RR

Insertion
RR

Rotation

A
−2

B
−1

BL BR

AL

BL

B
0

A

AL

BR

0

Single rotation

13

〖Example〗 Input the months Mar

Mar
0−1

May

May
0

Nov

Nov
0

−1

−2

May
0−1

Nov
00

−2−1

Mar
00

0

 The trouble maker Nov is in the right subtree’s right subtree of the trouble

finder Mar. Hence it is called an RR rotation.

In general:

A
−1

B
0

BL BR

AL

RR

Insertion
RR

Rotation

A
−2

B
−1

BL BR

AL

BL

B
0

A

AL

BR

0

A is not necessarily
the root of the tree

Single rotation

14

14

Aug

May
0−1

Nov
00

−2−1

Mar
01

1

Aug
0

14

Aug

May
0−1

Nov
00

−2−1

Mar
01

1

Aug
0

Apr

Apr
0

1

2

2

14

Aug

May
0−1

Nov
00

−2−1

Mar
01

1

Aug
0

Apr

Apr
0

1

2

2

What can we do now?

14

Aug

May
0−1

Nov
00

−2−1

Mar
01

1

Aug
0

Apr

Apr
0

1

2

2

14

Aug

May
0−1

Nov
00

−2−1

Mar
01

1

Aug
0

Apr

Apr
0

1

2

2 LL

Rotation
May

0−1

Nov
00

−2−1

Aug
01

1

−1

Mar
0

0

Apr
0

14

Aug

May
0−1

Nov
00

−2−1

Mar
01

1

Aug
0

Apr

Apr
0

1

2

2 LL

Rotation
May

0−1

Nov
00

−2−1

Aug
01

1

−1

Mar
0

0

Apr
0

In general:

14

Aug

May
0−1

Nov
00

−2−1

Mar
01

1

Aug
0

Apr

Apr
0

1

2

2 LL

Rotation
May

0−1

Nov
00

−2−1

Aug
01

1

−1

Mar
0

0

Apr
0

In general:

A
1

B
0

BRBL

AR

14

Aug

May
0−1

Nov
00

−2−1

Mar
01

1

Aug
0

Apr

Apr
0

1

2

2 LL

Rotation
May

0−1

Nov
00

−2−1

Aug
01

1

−1

Mar
0

0

Apr
0

In general:

A
1

B
0

BRBL

AR

LL

Insertion

A
2

B
1

BRBL

AR

14

Aug

May
0−1

Nov
00

−2−1

Mar
01

1

Aug
0

Apr

Apr
0

1

2

2 LL

Rotation
May

0−1

Nov
00

−2−1

Aug
01

1

−1

Mar
0

0

Apr
0

In general:

A
1

B
0

BRBL

AR

LL

Insertion

A
2

B
1

BRBL

AR

LL

Rotation
B
0

A

AR

BL

14

Aug

May
0−1

Nov
00

−2−1

Mar
01

1

Aug
0

Apr

Apr
0

1

2

2 LL

Rotation
May

0−1

Nov
00

−2−1

Aug
01

1

−1

Mar
0

0

Apr
0

In general:

A
1

B
0

BRBL

AR

LL

Insertion

A
2

B
1

BRBL

AR

LL

Rotation
B
0

A

AR

BL

BR

0

15

May
0−1

Nov
00

−2−1

Aug
01

1

−1

Mar
0

0

Apr
0

15

May
0−1

Nov
00

−2−1

Aug
01

1

−1

Mar
0

0

Apr
0

Jan

Jan
0

1

−1

2

15

May
0−1

Nov
00

−2−1

Aug
01

1

−1

Mar
0

0

Apr
0

Jan

Jan
0

1

−1

2

15

May
0−1

Nov
00

−2−1

Aug
01

1

−1

Mar
0

0

Apr
0

Jan

Jan
0

1

−1

2

LR

Rotation

Mar
0−1

May
0−1

−2−1

Aug
01

0

−1

Jan
0

0

Apr
0

Nov
0

15

May
0−1

Nov
00

−2−1

Aug
01

1

−1

Mar
0

0

Apr
0

Jan

Jan
0

1

−1

2

LR

Rotation

Mar
0−1

May
0−1

−2−1

Aug
01

0

−1

Jan
0

0

Apr
0

Nov
0

In general:

15

May
0−1

Nov
00

−2−1

Aug
01

1

−1

Mar
0

0

Apr
0

Jan

Jan
0

1

−1

2

LR

Rotation

Mar
0−1

May
0−1

−2−1

Aug
01

0

−1

Jan
0

0

Apr
0

Nov
0

In general:

A
1

B
0

BL

AR
C
0

CRCL

15

May
0−1

Nov
00

−2−1

Aug
01

1

−1

Mar
0

0

Apr
0

Jan

Jan
0

1

−1

2

LR

Rotation

Mar
0−1

May
0−1

−2−1

Aug
01

0

−1

Jan
0

0

Apr
0

Nov
0

In general:

A
1

B
0

BL

AR
C
0

CRCL

LR

Insertion
A
2

B
−1

BL

AR
C
±1

CRCL

OR

15

May
0−1

Nov
00

−2−1

Aug
01

1

−1

Mar
0

0

Apr
0

Jan

Jan
0

1

−1

2

LR

Rotation

Mar
0−1

May
0−1

−2−1

Aug
01

0

−1

Jan
0

0

Apr
0

Nov
0

In general:

A
1

B
0

BL

AR
C
0

CRCL

LR

Insertion
A
2

B
−1

BL

AR
C
±1

CRCL

OR

LR

Rotation

BL AR

C
0

A
−1 or 0

CR

B
0 or 1

CL

OR

15

May
0−1

Nov
00

−2−1

Aug
01

1

−1

Mar
0

0

Apr
0

Jan

Jan
0

1

−1

2

LR

Rotation

Mar
0−1

May
0−1

−2−1

Aug
01

0

−1

Jan
0

0

Apr
0

Nov
0

In general:

A
1

B
0

BL

AR
C
0

CRCL

LR

Insertion
A
2

B
−1

BL

AR
C
±1

CRCL

OR

LR

Rotation

BL AR

C
0

A
−1 or 0

CR

B
0 or 1

CL

OR

15

May
0−1

Nov
00

−2−1

Aug
01

1

−1

Mar
0

0

Apr
0

Jan

Jan
0

1

−1

2

LR

Rotation

Mar
0−1

May
0−1

−2−1

Aug
01

0

−1

Jan
0

0

Apr
0

Nov
0

In general:

A
1

B
0

BL

AR
C
0

CRCL

LR

Insertion
A
2

B
−1

BL

AR
C
±1

CRCL

OR

LR

Rotation

BL AR

C
0

A
−1 or 0

CR

B
0 or 1

CL

OR

15

May
0−1

Nov
00

−2−1

Aug
01

1

−1

Mar
0

0

Apr
0

Jan

Jan
0

1

−1

2

LR

Rotation

Mar
0−1

May
0−1

−2−1

Aug
01

0

−1

Jan
0

0

Apr
0

Nov
0

In general:

A
1

B
0

BL

AR
C
0

CRCL

LR

Insertion
A
2

B
−1

BL

AR
C
±1

CRCL

OR

LR

Rotation

BL AR

C
0

A
−1 or 0

CR

B
0 or 1

CL

OR

Double Rotation

16

16

Dec July

Mar
0−1

May
0−1

−2−1

Aug
01

1

−1

Jan
0

Apr
0

Nov
0

July
0

Dec
0

16

Dec July

Mar
0−1

May
0−1

−2−1

Aug
01

1

−1

Jan
0

Apr
0

Nov
0

July
0

Dec
0

Feb

Feb
0

−1

1

−2

2

16

Dec July

Mar
0−1

May
0−1

−2−1

Aug
01

1

−1

Jan
0

Apr
0

Nov
0

July
0

Dec
0

Feb

Feb
0

−1

1

−2

2
RL

Rotation

July
0

Dec
0−1

Aug
01

−2−1

Jan
01

0

−1

Feb
0

0

Apr
0

Mar
0−1

May
0−1

−2−11

Nov
0

16

Dec July

Mar
0−1

May
0−1

−2−1

Aug
01

1

−1

Jan
0

Apr
0

Nov
0

July
0

Dec
0

Feb

Feb
0

−1

1

−2

2
RL

Rotation

July
0

Dec
0−1

Aug
01

−2−1

Jan
01

0

−1

Feb
0

0

Apr
0

Mar
0−1

May
0−1

−2−11

Nov
0

In general:

16

Dec July

Mar
0−1

May
0−1

−2−1

Aug
01

1

−1

Jan
0

Apr
0

Nov
0

July
0

Dec
0

Feb

Feb
0

−1

1

−2

2
RL

Rotation

July
0

Dec
0−1

Aug
01

−2−1

Jan
01

0

−1

Feb
0

0

Apr
0

Mar
0−1

May
0−1

−2−11

Nov
0

In general:

A
1

B
0

BR

AL
C
0

CL CR

16

Dec July

Mar
0−1

May
0−1

−2−1

Aug
01

1

−1

Jan
0

Apr
0

Nov
0

July
0

Dec
0

Feb

Feb
0

−1

1

−2

2
RL

Rotation

July
0

Dec
0−1

Aug
01

−2−1

Jan
01

0

−1

Feb
0

0

Apr
0

Mar
0−1

May
0−1

−2−11

Nov
0

In general:

A
1

B
0

BR

AL
C
0

CL CR

RL

Insertion
A
−2

B
1

BR

AL
C
±1

CL CR

OR

16

Dec July

Mar
0−1

May
0−1

−2−1

Aug
01

1

−1

Jan
0

Apr
0

Nov
0

July
0

Dec
0

Feb

Feb
0

−1

1

−2

2
RL

Rotation

July
0

Dec
0−1

Aug
01

−2−1

Jan
01

0

−1

Feb
0

0

Apr
0

Mar
0−1

May
0−1

−2−11

Nov
0

In general:

A
1

B
0

BR

AL
C
0

CL CR

RL

Insertion
A
−2

B
1

BR

AL
C
±1

CL CR

OR

RL

Rotation

BRAL

C
0

A
0 or 1

CL

B
−1 or 0

CR

OR

17

July
0

Dec
0−1

Aug
01

−2−1

Jan
01

0

−1

Feb
0

0

Apr
0

Mar
0−1

May
0−1

−2−11

Nov
0

17

July
0

Dec
0−1

Aug
01

−2−1

Jan
01

0

−1

Feb
0

0

Apr
0

Mar
0−1

May
0−1

−2−11

Nov
0

June

June
0

−1

−1

−1

2

17

July
0

Dec
0−1

Aug
01

−2−1

Jan
01

0

−1

Feb
0

0

Apr
0

Mar
0−1

May
0−1

−2−11

Nov
0

June

June
0

−1

−1

−1

2

17

July
0

Dec
0−1

Aug
01

−2−1

Jan
01

0

−1

Feb
0

0

Apr
0

Mar
0−1

May
0−1

−2−11

Nov
0

June

June
0

−1

−1

−1

2

Nov
0

Dec
0−1

Aug
1

−2−1

Feb
0

1

July
−1

Apr
0

Mar
0

May
−1

June
0

Jan
0

17

July
0

Dec
0−1

Aug
01

−2−1

Jan
01

0

−1

Feb
0

0

Apr
0

Mar
0−1

May
0−1

−2−11

Nov
0

June Oct

June
0

−1

−1

−1

2

Nov
0

Dec
0−1

Aug
1

−2−1

Feb
0

1

July
−1

Apr
0

Mar
0

May
−1

June
0

Jan
0

Oct
0

−1

−2

−1

−1

17

July
0

Dec
0−1

Aug
01

−2−1

Jan
01

0

−1

Feb
0

0

Apr
0

Mar
0−1

May
0−1

−2−11

Nov
0

June Oct

June
0

−1

−1

−1

2

Nov
0

Dec
0−1

Aug
1

−2−1

Feb
0

1

July
−1

Apr
0

Mar
0

May
−1

June
0

Jan
0

Oct
0

−1

−2

−1

−1

17

July
0

Dec
0−1

Aug
01

−2−1

Jan
01

0

−1

Feb
0

0

Apr
0

Mar
0−1

May
0−1

−2−11

Nov
0

June Oct

June
0

−1

−1

−1

2

Nov
0

Dec
0−1

Aug
1

−2−1

Feb
0

1

July
−1

Apr
0

Mar
0

May
−1

June
0

Jan
0

Oct
0

−1

−2

−1

−1

Oct
0

Dec
0−1

Aug
1

−2−1

Feb
0

1

July
−1

Apr
0

Mar
0

Nov
0

June
0

Jan
0

May
0

17

July
0

Dec
0−1

Aug
01

−2−1

Jan
01

0

−1

Feb
0

0

Apr
0

Mar
0−1

May
0−1

−2−11

Nov
0

June Oct Sept

June
0

−1

−1

−1

2

Nov
0

Dec
0−1

Aug
1

−2−1

Feb
0

1

July
−1

Apr
0

Mar
0

May
−1

June
0

Jan
0

Oct
0

−1

−2

−1

−1

Oct
0

Dec
0−1

Aug
1

−2−1

Feb
0

1

July
−1

Apr
0

Mar
0

Nov
0

June
0

Jan
0

May
0

Sept
0

−1

−1

−1

−1

17

July
0

Dec
0−1

Aug
01

−2−1

Jan
01

0

−1

Feb
0

0

Apr
0

Mar
0−1

May
0−1

−2−11

Nov
0

June Oct Sept

June
0

−1

−1

−1

2

Nov
0

Dec
0−1

Aug
1

−2−1

Feb
0

1

July
−1

Apr
0

Mar
0

May
−1

June
0

Jan
0

Oct
0

−1

−2

−1

−1

Oct
0

Dec
0−1

Aug
1

−2−1

Feb
0

1

July
−1

Apr
0

Mar
0

Nov
0

June
0

Jan
0

May
0

Sept
0

−1

−1

−1

−1

Note: Several bf’s
might be changed even if

we don’t need to reconstruct
the tree.

17

July
0

Dec
0−1

Aug
01

−2−1

Jan
01

0

−1

Feb
0

0

Apr
0

Mar
0−1

May
0−1

−2−11

Nov
0

June Oct Sept

June
0

−1

−1

−1

2

Nov
0

Dec
0−1

Aug
1

−2−1

Feb
0

1

July
−1

Apr
0

Mar
0

May
−1

June
0

Jan
0

Oct
0

−1

−2

−1

−1

Oct
0

Dec
0−1

Aug
1

−2−1

Feb
0

1

July
−1

Apr
0

Mar
0

Nov
0

June
0

Jan
0

May
0

Sept
0

−1

−1

−1

−1

Note: Several bf’s
might be changed even if

we don’t need to reconstruct
the tree.

Another option is to keep a height field for each node.

17

July
0

Dec
0−1

Aug
01

−2−1

Jan
01

0

−1

Feb
0

0

Apr
0

Mar
0−1

May
0−1

−2−11

Nov
0

June Oct Sept

June
0

−1

−1

−1

2

Nov
0

Dec
0−1

Aug
1

−2−1

Feb
0

1

July
−1

Apr
0

Mar
0

May
−1

June
0

Jan
0

Oct
0

−1

−2

−1

−1

Oct
0

Dec
0−1

Aug
1

−2−1

Feb
0

1

July
−1

Apr
0

Mar
0

Nov
0

June
0

Jan
0

May
0

Sept
0

−1

−1

−1

−1

Note: Several bf’s
might be changed even if

we don’t need to reconstruct
the tree.

Another option is to keep a height field for each node.

Read the declaration and functions in [Weiss] Figures 4.42 – 4.48

18

One last question:
Obviously we have Tp = O(h)

 where h is the height of the tree.
But h = ?

18

Let nh be the minimum number of nodes in a height-balanced tree of
height h. What does the tree look like?

The worst case for AVL tree of height h.

18

Let nh be the minimum number of nodes in a height-balanced tree of
height h. What does the tree look like?

A

h−2 h−1

A

h−2h−1OR ⇒ nh = nh−1 + nh−2 + 1

The worst case for AVL tree of height h.

18

Let nh be the minimum number of nodes in a height-balanced tree of
height h. What does the tree look like?

A

h−2 h−1

A

h−2h−1OR ⇒ nh = nh−1 + nh−2 + 1

 Fibonacci numbers:

 F0 = 0, F1 = 1, Fi = Fi−1 + Fi−2 for i > 1

The worst case for AVL tree of height h.

18

Let nh be the minimum number of nodes in a height-balanced tree of
height h. What does the tree look like?

A

h−2 h−1

A

h−2h−1OR ⇒ nh = nh−1 + nh−2 + 1

 Fibonacci numbers:

 F0 = 0, F1 = 1, Fi = Fi−1 + Fi−2 for i > 1

⇒ nh = Fh+3 − 1, for h ≥ 0

The worst case for AVL tree of height h.

18

Let nh be the minimum number of nodes in a height-balanced tree of
height h. What does the tree look like?

A

h−2 h−1

A

h−2h−1OR ⇒ nh = nh−1 + nh−2 + 1

 Fibonacci numbers:

 F0 = 0, F1 = 1, Fi = Fi−1 + Fi−2 for i > 1

⇒ nh = Fh+3 − 1, for h ≥ 0

Fibonacci number theory gives that
i

iF ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
≈

2
51

5
1

The worst case for AVL tree of height h.

3

18

Let nh be the minimum number of nodes in a height-balanced tree of
height h. What does the tree look like?

A

h−2 h−1

A

h−2h−1OR ⇒ nh = nh−1 + nh−2 + 1

 Fibonacci numbers:

 F0 = 0, F1 = 1, Fi = Fi−1 + Fi−2 for i > 1

⇒ nh = Fh+3 − 1, for h ≥ 0

Fibonacci number theory gives that
i

iF ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
≈

2
51

5
1

)(ln1
2
51

5
1

2

nOhn
h

h =⇒−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
≈⇒

+

The worst case for AVL tree of height h.

3

Outline:
Balanced Binary Search Trees (1)

19

• Binary search trees

• AVL trees

• Splay trees

• Amortized analysis

• Take-home messages

20

Splay Trees (1985)

Figure courtesy: https://csd.cmu.edu/people/faculty/daniel-sleator

https://en.wikipedia.org/wiki/Robert_Tarjan

Robert Tarjan
Daniel Sleator

Self-Adjusting Binary Search Trees

DANIEL DOMINIC SLEATOR AND ROBERT ENDRE TARJAN

A T&T Bell Laboratories, Murray Hill, NJ

Abstract. The splay tree, a self-adjusting form of binary search tree, is developed and analyzed. The
binary search tree is a data structure for representing tables and lists so that accessing, inserting, and
deleting items is easy. On an n-node splay tree, all the standard search tree operations have an amortized
time bound of @log n) per operation, where by “amortized time” is meant the time per operation
averaged over a worst-case sequence of operations. Thus splay trees are as efficient as balanced trees
when total running time is the measure of interest. In addition, for sufficiently long access sequences,
splay trees are as efficient, to within a constant factor, as static optimum search trees. The efficiency of
splay trees comes not from an explicit structural constraint, as with balanced trees, but from applying a
simple restructuring heuristic, called splaying, whenever the tree is accessed. Extensions of splaying give
simplified forms of two other data structures: lexicographic or multidimensional search trees and link/
cut trees.

Categories and Subject Descriptors: E. 1 [Data]: Data Structures-trees; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Problems-sorting and searching
General Terms: Algorithms, Theory
Additional Key Words and Phrases: Amortized complexity, balanced trees, multidimensional searching,
network optimization, self-organizing data structures

1. Introduction
In this paper we apply the related concepts of amortized complexity and se&
adjustment to binary search trees. We are motivated by the observation that the
known kinds of efficient search trees have various drawbacks. Balanced trees, such
as height-balanced trees [2, 221, weight-balanced trees [26], and B-trees [6] and
their variants [5, 18, 19,241 have a worst-case time bound of @log n) per operation
on an n-node tree. However, balanced trees are not as efficient as possible if the
access pattern is nonuniform, and they also need extra space for storage of balance
information. Optimum search trees [16,20,22] guarantee minimum average access
time, but only under the assumption of fixed, known access probabilities and no
correlation among accesses. Their insertion and deletion costs are also very high.
Biased search trees [7, 8, 131 combine the fast average access time of optimum
trees with the fast updating of balanced trees but have structural constraints even
more complicated and harder to maintain than the constraints of balanced trees.
Finger search trees [11, 14, 19, 23, 241 allow fast access in the vicinity of one or
more “fingers” but require the storage of extra pointers in each node.

Authors’ address: AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1985 ACM 0004-541 1/85/0700-0652 $00.75

Journal of the Association for Computing Machinery. Vol. 32, No. 3, July 1985, pp. 652-686.

https://csd.cmu.edu/people/faculty/daniel-sleator
https://en.wikipedia.org/wiki/Robert_Tarjan

21

Splay Trees

21

Target : Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

Splay Trees

21

Target : Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

 Does it mean that every
 operation takes O(log N) time?

Splay Trees

21

Target : Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

 Does it mean that every
 operation takes O(log N) time?

No. It means that the
 amortized time is O(log N).

Splay Trees

21

Target : Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

 Does it mean that every
 operation takes O(log N) time?

No. It means that the
 amortized time is O(log N).

 So a single operation might
 still take O(N) time?
 Then what’s the point?

Splay Trees

21

Target : Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

 Does it mean that every
 operation takes O(log N) time?

No. It means that the
 amortized time is O(log N).

 So a single operation might
 still take O(N) time?
 Then what’s the point?

The bound is weaker.
But the effect is the same:

 There are no bad input sequences.

Splay Trees

21

Target : Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

 Does it mean that every
 operation takes O(log N) time?

No. It means that the
 amortized time is O(log N).

 So a single operation might
 still take O(N) time?
 Then what’s the point?

The bound is weaker.
But the effect is the same:

 There are no bad input sequences.

 But if one node takes O(N) time
 to access, we can keep accessing it

for M times, can’t we?

Splay Trees

21

Target : Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

 Does it mean that every
 operation takes O(log N) time?

No. It means that the
 amortized time is O(log N).

 So a single operation might
 still take O(N) time?
 Then what’s the point?

The bound is weaker.
But the effect is the same:

 There are no bad input sequences.

 But if one node takes O(N) time
 to access, we can keep accessing it

for M times, can’t we?

 Surely we can – that only means
 that whenever a node is accessed,

it must be moved. Otherwise visiting a
bad node repeatedly leads to bad performance

Splay Trees

21

Target : Any M consecutive tree operations starting from an
empty tree take at most O(M log N) time.

 Does it mean that every
 operation takes O(log N) time?

No. It means that the
 amortized time is O(log N).

 So a single operation might
 still take O(N) time?
 Then what’s the point?

The bound is weaker.
But the effect is the same:

 There are no bad input sequences.

 But if one node takes O(N) time
 to access, we can keep accessing it

for M times, can’t we?

 Surely we can – that only means
 that whenever a node is accessed,

it must be moved. Otherwise visiting a
bad node repeatedly leads to bad performance

Idea : After a node is accessed, it is pushed to the root by a
series of AVL tree rotations.

Splay Trees

22

22

k5

F
k4

E
k3

D
k2

A
k1

CB

22

k5

F
k4

E
k3

D
k2

A
k1

CB

22

k5

F
k4

E
k3

D
k2

A
k1

CB

22

k5

F
k4

E
k3

D

k2

BA

k1

C

22

k5

F
k4

E

k2

BA

k1

k3

DC

22

k5

F

k4

E

k2

BA

k1

k3

DC

22

k4

E

k5

F

k2

BA

k1

k3

DC

22

k4

E

k5

F

k2

BA

k1

k3

DC

22

k4

E

k5

F

k2

BA

k1

k3

DC

Does NOT work!

The rotation pushes other nodes deeper

23

23

An even worse case:

1

23

An even worse case:

1

2

23

An even worse case:

1

2

23

An even worse case:

2

1

23

An even worse case:

2

1 3

23

An even worse case:

3

2

1

23

An even worse case:

3

2

1

Insert: 1, 2, 3, … N

23

An even worse case:

Insert: 1, 2, 3, … N

3

2

1

N

23

An even worse case:

Insert: 1, 2, 3, … N

3

2

1

N Find: 1

23

An even worse case:

Insert: 1, 2, 3, … N

3

2

1

N Find: 1

3

2

1

N

23

An even worse case:

Insert: 1, 2, 3, … N

3

2

1

N Find: 1

3

2

1

N

Find: 2

23

An even worse case:

Insert: 1, 2, 3, … N

3

2

1

N Find: 1

3

2

1

N

Find: 2

3

1

2

N

23

An even worse case:

Insert: 1, 2, 3, … N

3

2

1

N Find: 1

3

2

1

N

Find: 2

3

1

2

N

…… Find: N

23

An even worse case:

Insert: 1, 2, 3, … N

3

2

1

N Find: 1

3

2

1

N

Find: 2

3

1

2

N

…… Find: N

3

2

1

N

23

An even worse case:

Insert: 1, 2, 3, … N

3

2

1

N Find: 1

3

2

1

N

Find: 2

3

1

2

N

…… Find: N

3

2

1

N

T (N) = O (N 2)

24

24

Try again -- For any nonroot node X , denote its parent by P and grandparent
by G :

24

Try again -- For any nonroot node X , denote its parent by P and grandparent
by G :

Case 1: P is the rootZig

24

Try again -- For any nonroot node X , denote its parent by P and grandparent
by G :

Case 1: P is the root Rotate X and PZig

24

Try again -- For any nonroot node X , denote its parent by P and grandparent
by G :

Case 1: P is the root Rotate X and P

Case 2: P is not the root

Zig

24

Try again -- For any nonroot node X , denote its parent by P and grandparent
by G :

Case 1: P is the root Rotate X and P

Case 2: P is not the root

Zig-zag G

D
P

A
X

B C

Zig

24

Try again -- For any nonroot node X , denote its parent by P and grandparent
by G :

Case 1: P is the root Rotate X and P

Case 2: P is not the root

Zig-zag G

D
P

A
X

B C

Double rotation

Zig

24

Try again -- For any nonroot node X , denote its parent by P and grandparent
by G :

Case 1: P is the root Rotate X and P

Case 2: P is not the root

Zig-zag G

D
P

A
X

B C

X

G

C D

P

A B

Double rotation

Zig

24

Try again -- For any nonroot node X , denote its parent by P and grandparent
by G :

Case 1: P is the root Rotate X and P

Case 2: P is not the root

Zig-zag G

D
P

A
X

B C

X

G

C D

P

A B

Double rotation

Zig-zig G

D
P

C
X

A B

Zig

24

Try again -- For any nonroot node X , denote its parent by P and grandparent
by G :

Case 1: P is the root Rotate X and P

Case 2: P is not the root

Zig-zag G

D
P

A
X

B C

X

G

C D

P

A B

Double rotation

Zig-zig G

D
P

C
X

A B

Single rotation

Zig

24

Try again -- For any nonroot node X , denote its parent by P and grandparent
by G :

Case 1: P is the root Rotate X and P

Case 2: P is not the root

Zig-zag G

D
P

A
X

B C

X

G

C D

P

A B

Double rotation

Zig-zig G

D
P

C
X

A B

Single rotation

X

A
P

B
G

DC

Zig

25

Compare the Zig-zig case:

G

D
P

C
X

A B

X

A
P

B
G

DC

G

D
P

C
X

A B

X

A

P D

G

CB

25

Compare the Zig-zig case:

G

D
P

C
X

A B

X

A
P

B
G

DC

G

D
P

C
X

A B

X

A

P D

G

CB

For zig-zig case, the right child of the node on splaying always goes deep.
The key is to make it go slower.

26

26

k5

F
k4

E
k3

D
k2

A
k1

CB

26

k5

F
k4

E
k1

k3

DC

k2

BA

26

k1

k2

BA

k4

k5

FE

k3

DC

26

k1

k2

BA

k4

k5

FE

k3

DC

Splaying not only moves the accessed
node to the root, but also roughly halves

the depth of most nodes on the path.

27

27

Insert: 1, 2, 3, 4, 5, 6, 7

27

Insert: 1, 2, 3, 4, 5, 6, 7

7

1

6

5

4

3

2

27

Insert: 1, 2, 3, 4, 5, 6, 7

7

1

6

5

4

3

2

Find: 1

27

Insert: 1, 2, 3, 4, 5, 6, 7

7

1

6

5

4

3

2

7

6

5

4

1

3

2

Find: 1

27

Insert: 1, 2, 3, 4, 5, 6, 7

7

1

6

5

4

3

2

7

6

5

4

1

3

2

Find: 1

7

6

1

4

5

3

2

27

Insert: 1, 2, 3, 4, 5, 6, 7

7

1

6

5

4

3

2

7

6

5

4

1

3

2

Find: 1

7

6

1

4

5

3

2

1

6

74

5

3

2

27

Insert: 1, 2, 3, 4, 5, 6, 7

7

1

6

5

4

3

2

7

6

5

4

1

3

2

Find: 1

7

6

1

4

5

3

2

1

6

74

5

3

2

Read the 32-node example given
in [Weiss] Figures 4.52 – 4.60

28

Operations on Splay Trees

28

Deletions:

Operations on Splay Trees

28

Deletions:

☞ Step 1: Find X ;

X will be at the root
due to splaying.

Operations on Splay Trees

28

Deletions:

☞ Step 1: Find X ;

X will be at the root
due to splaying.

☞ Step 2: Remove X ;

Operations on Splay Trees

28

Deletions:

☞ Step 1: Find X ;

X will be at the root
due to splaying.

☞ Step 2: Remove X ;

There will be two
subtrees TL and TR .

Operations on Splay Trees

28

Deletions:

☞ Step 1: Find X ;

X will be at the root
due to splaying.

☞ Step 2: Remove X ;

There will be two
subtrees TL and TR .

☞ Step 3: FindMax (TL) ;

Operations on Splay Trees

28

Deletions:

☞ Step 1: Find X ;

X will be at the root
due to splaying.

☞ Step 2: Remove X ;

There will be two
subtrees TL and TR .

☞ Step 3: FindMax (TL) ;
The largest element

will be the root of TL ,
and has no right child.

Operations on Splay Trees

28

Deletions:

☞ Step 1: Find X ;

X will be at the root
due to splaying.

☞ Step 2: Remove X ;

There will be two
subtrees TL and TR .

☞ Step 3: FindMax (TL) ;
The largest element

will be the root of TL ,
and has no right child.

☞ Step 4: Make TR the right child of the root of TL .

Operations on Splay Trees

29

Join(t1, t2):

Operations on Splay Trees662 D. D. SLEATOR AND R. E. TARJAN

(b)
FIG. 7. Implementation of join and split: (a) join(t,, t2) . (b)
split (i, I).

split n - A A -

join A n t A - A n -
(b)

FIG. 8. Implementation of insertion and deletion using join
and split (a) insert(i, I). (b) delete(i, I) .

i, in t l . After the access, the root of tl contains i and thus has a null right child. We
complete the join by making t2 the right subtree of this root and returning the
resulting tree. To carry out split(& t), we perform uccess(i, t) and then return the
two trees formed by breaking either the left link or the right link from the new root
oft, depending on whether the root contains an item greater than i or not greater
than i . (See Figure 7 .) In both join and split we must deal specially with the case
of an empty input tree (or trees).

To carry out insert(i, t), we perform split(i, t) and then replace t by a tree
consisting of a new root node containing i, whose left and right subtrees are the
trees t l and t2 returned by the split. To carry out delete(i, t), we perform uc-
cess(& t) and then replace t by the join of its left and right subtrees. (See Figure 8.)

There are alternative implementations of insert and delete that have slightly
better amortized time bounds. To carry out insert(i, t), we search for i, then replace
the pointer to null reached during the search by a pointer to a new node containing
i, and finally splay the tree at the new node. To carry out delete(i, t), we search for
the node containing i. Let this node be x and let its parent be y. We replace x as a
child of y by the join of the left and right subtrees of x, and then we splay at y. (See
Figure 9.)

Split(i, t):

662 D. D. SLEATOR AND R. E. TARJAN

(b)
FIG. 7. Implementation of join and split: (a) join(t,, t2) . (b)
split (i, I).

split n - A A -

join A n t A - A n -
(b)

FIG. 8. Implementation of insertion and deletion using join
and split (a) insert(i, I). (b) delete(i, I) .

i, in t l . After the access, the root of tl contains i and thus has a null right child. We
complete the join by making t2 the right subtree of this root and returning the
resulting tree. To carry out split(& t), we perform uccess(i, t) and then return the
two trees formed by breaking either the left link or the right link from the new root
oft, depending on whether the root contains an item greater than i or not greater
than i . (See Figure 7 .) In both join and split we must deal specially with the case
of an empty input tree (or trees).

To carry out insert(i, t), we perform split(i, t) and then replace t by a tree
consisting of a new root node containing i, whose left and right subtrees are the
trees t l and t2 returned by the split. To carry out delete(i, t), we perform uc-
cess(& t) and then replace t by the join of its left and right subtrees. (See Figure 8.)

There are alternative implementations of insert and delete that have slightly
better amortized time bounds. To carry out insert(i, t), we search for i, then replace
the pointer to null reached during the search by a pointer to a new node containing
i, and finally splay the tree at the new node. To carry out delete(i, t), we search for
the node containing i. Let this node be x and let its parent be y. We replace x as a
child of y by the join of the left and right subtrees of x, and then we splay at y. (See
Figure 9.)

Insert(i, t):

662 D. D. SLEATOR AND R. E. TARJAN

(b)
FIG. 7. Implementation of join and split: (a) join(t,, t2) . (b)
split (i, I).

split n - A A -

join A n t A - A n -
(b)

FIG. 8. Implementation of insertion and deletion using join
and split (a) insert(i, I). (b) delete(i, I) .

i, in t l . After the access, the root of tl contains i and thus has a null right child. We
complete the join by making t2 the right subtree of this root and returning the
resulting tree. To carry out split(& t), we perform uccess(i, t) and then return the
two trees formed by breaking either the left link or the right link from the new root
oft, depending on whether the root contains an item greater than i or not greater
than i . (See Figure 7 .) In both join and split we must deal specially with the case
of an empty input tree (or trees).

To carry out insert(i, t), we perform split(i, t) and then replace t by a tree
consisting of a new root node containing i, whose left and right subtrees are the
trees t l and t2 returned by the split. To carry out delete(i, t), we perform uc-
cess(& t) and then replace t by the join of its left and right subtrees. (See Figure 8.)

There are alternative implementations of insert and delete that have slightly
better amortized time bounds. To carry out insert(i, t), we search for i, then replace
the pointer to null reached during the search by a pointer to a new node containing
i, and finally splay the tree at the new node. To carry out delete(i, t), we search for
the node containing i. Let this node be x and let its parent be y. We replace x as a
child of y by the join of the left and right subtrees of x, and then we splay at y. (See
Figure 9.)

Delete(i, t):

662 D. D. SLEATOR AND R. E. TARJAN

(b)
FIG. 7. Implementation of join and split: (a) join(t,, t2) . (b)
split (i, I).

split n - A A -

join A n t A - A n -
(b)

FIG. 8. Implementation of insertion and deletion using join
and split (a) insert(i, I). (b) delete(i, I) .

i, in t l . After the access, the root of tl contains i and thus has a null right child. We
complete the join by making t2 the right subtree of this root and returning the
resulting tree. To carry out split(& t), we perform uccess(i, t) and then return the
two trees formed by breaking either the left link or the right link from the new root
oft, depending on whether the root contains an item greater than i or not greater
than i . (See Figure 7 .) In both join and split we must deal specially with the case
of an empty input tree (or trees).

To carry out insert(i, t), we perform split(i, t) and then replace t by a tree
consisting of a new root node containing i, whose left and right subtrees are the
trees t l and t2 returned by the split. To carry out delete(i, t), we perform uc-
cess(& t) and then replace t by the join of its left and right subtrees. (See Figure 8.)

There are alternative implementations of insert and delete that have slightly
better amortized time bounds. To carry out insert(i, t), we search for i, then replace
the pointer to null reached during the search by a pointer to a new node containing
i, and finally splay the tree at the new node. To carry out delete(i, t), we search for
the node containing i. Let this node be x and let its parent be y. We replace x as a
child of y by the join of the left and right subtrees of x, and then we splay at y. (See
Figure 9.)

All operations involve a series of splay steps.
Check the details in the “Self-adjusting binary search trees” paper.

Next, we study the complexity of splay tree operations.

Outline:
Balanced Binary Search Trees (1)

30

• Binary search trees

• AVL trees

• Splay trees

• Amortized analysis

• Take-home messages

31

Amortized Analysis

31

Target : Any M consecutive operations take at most O(M log N) time.

Amortized Analysis

31

Target : Any M consecutive operations take at most O(M log N) time.

-- Amortized time bound

Amortized Analysis

31

Target : Any M consecutive operations take at most O(M log N) time.

-- Amortized time bound

worst-case bound amortized bound average-case bound

Amortized Analysis

31

Target : Any M consecutive operations take at most O(M log N) time.

-- Amortized time bound

worst-case bound amortized bound average-case bound≥

Amortized Analysis

31

Target : Any M consecutive operations take at most O(M log N) time.

-- Amortized time bound

worst-case bound amortized bound average-case bound≥ ≥

Amortized Analysis

31

Target : Any M consecutive operations take at most O(M log N) time.

-- Amortized time bound

worst-case bound amortized bound average-case bound≥ ≥

Probability
is not involved

Amortized Analysis

31

Target : Any M consecutive operations take at most O(M log N) time.

-- Amortized time bound

worst-case bound amortized bound average-case bound≥ ≥

Probability
is not involved

☞ Aggregate analysis

☞ Accounting method

☞ Potential method

Amortized Analysis

32

Aggregate Method

32

Idea : Show that for all n, a sequence of n operations takes worst-
case time T(n) in total. In the worst case, the average cost,
or amortized cost, per operation is therefore T(n)/n.

Aggregate Method

32

Idea : Show that for all n, a sequence of n operations takes worst-
case time T(n) in total. In the worst case, the average cost,
or amortized cost, per operation is therefore T(n)/n.

〖Example〗 Stack with MultiPop(int k, Stack S)

Aggregate Method

32

Idea : Show that for all n, a sequence of n operations takes worst-
case time T(n) in total. In the worst case, the average cost,
or amortized cost, per operation is therefore T(n)/n.

〖Example〗 Stack with MultiPop(int k, Stack S)

Algorithm {
 while (!IsEmpty(S) && k>0) {
 Pop(S);
 k - -;
 } /* end while-loop */
}

Aggregate Method

32

Idea : Show that for all n, a sequence of n operations takes worst-
case time T(n) in total. In the worst case, the average cost,
or amortized cost, per operation is therefore T(n)/n.

〖Example〗 Stack with MultiPop(int k, Stack S)

Algorithm {
 while (!IsEmpty(S) && k>0) {
 Pop(S);
 k - -;
 } /* end while-loop */
}

T = min (sizeof(S), k)

Aggregate Method

32

Idea : Show that for all n, a sequence of n operations takes worst-
case time T(n) in total. In the worst case, the average cost,
or amortized cost, per operation is therefore T(n)/n.

〖Example〗 Stack with MultiPop(int k, Stack S)

Algorithm {
 while (!IsEmpty(S) && k>0) {
 Pop(S);
 k - -;
 } /* end while-loop */
}

T = min (sizeof(S), k)

Consider a sequence of n Push, Pop,
and MultiPop operations on an initially
empty stack.

Aggregate Method

32

Idea : Show that for all n, a sequence of n operations takes worst-
case time T(n) in total. In the worst case, the average cost,
or amortized cost, per operation is therefore T(n)/n.

〖Example〗 Stack with MultiPop(int k, Stack S)

Algorithm {
 while (!IsEmpty(S) && k>0) {
 Pop(S);
 k - -;
 } /* end while-loop */
}

T = min (sizeof(S), k)

Consider a sequence of n Push, Pop,
and MultiPop operations on an initially
empty stack.

sizeof(S) ≤ n

Aggregate Method

32

Idea : Show that for all n, a sequence of n operations takes worst-
case time T(n) in total. In the worst case, the average cost,
or amortized cost, per operation is therefore T(n)/n.

〖Example〗 Stack with MultiPop(int k, Stack S)

Algorithm {
 while (!IsEmpty(S) && k>0) {
 Pop(S);
 k - -;
 } /* end while-loop */
}

T = min (sizeof(S), k)

Consider a sequence of n Push, Pop,
and MultiPop operations on an initially
empty stack.

sizeof(S) ≤ n

Total = O(n2) ?

Aggregate Method

32

Idea : Show that for all n, a sequence of n operations takes worst-
case time T(n) in total. In the worst case, the average cost,
or amortized cost, per operation is therefore T(n)/n.

〖Example〗 Stack with MultiPop(int k, Stack S)

Algorithm {
 while (!IsEmpty(S) && k>0) {
 Pop(S);
 k - -;
 } /* end while-loop */
}

T = min (sizeof(S), k)

Consider a sequence of n Push, Pop,
and MultiPop operations on an initially
empty stack.

sizeof(S) ≤ n

Total = O(n2) ?

We can pop each object
from the stack at most once for each

time we have pushed it
onto the stack

Aggregate Method

32

Idea : Show that for all n, a sequence of n operations takes worst-
case time T(n) in total. In the worst case, the average cost,
or amortized cost, per operation is therefore T(n)/n.

〖Example〗 Stack with MultiPop(int k, Stack S)

Algorithm {
 while (!IsEmpty(S) && k>0) {
 Pop(S);
 k - -;
 } /* end while-loop */
}

T = min (sizeof(S), k)

Consider a sequence of n Push, Pop,
and MultiPop operations on an initially
empty stack.

sizeof(S) ≤ n

Total = O(n2) ?

We can pop each object
from the stack at most once for each

time we have pushed it
onto the stack

Tamortized= O(n)/n = O(1)

Aggregate Method

32

Idea : Show that for all n, a sequence of n operations takes worst-
case time T(n) in total. In the worst case, the average cost,
or amortized cost, per operation is therefore T(n)/n.

〖Example〗 Stack with MultiPop(int k, Stack S)

Algorithm {
 while (!IsEmpty(S) && k>0) {
 Pop(S);
 k - -;
 } /* end while-loop */
}

T = min (sizeof(S), k)

Consider a sequence of n Push, Pop,
and MultiPop operations on an initially
empty stack.

sizeof(S) ≤ n

Total = O(n2) ?

We can pop each object
from the stack at most once for each

time we have pushed it
onto the stack

Tamortized= O(n)/n = O(1)

Aggregate Method

The total time of pop should be less than the total time of push.
The total time of push takes at most O(n).

33

Accounting Method

33

Idea : When an operation’s amortized cost
 exceeds its actual cost , we assign the
 difference to specific objects in the data
 structure as credit. Credit can help pay
 for later operations whose amortized
 cost is less than their actual cost.

iĉ
ic

Accounting Method

33

Savings

Account

Idea : When an operation’s amortized cost
 exceeds its actual cost , we assign the
 difference to specific objects in the data
 structure as credit. Credit can help pay
 for later operations whose amortized
 cost is less than their actual cost.

iĉ
ic

Accounting Method

33

Note: For all sequences of n operations, we must have

Savings

Account

Idea : When an operation’s amortized cost
 exceeds its actual cost , we assign the
 difference to specific objects in the data
 structure as credit. Credit can help pay
 for later operations whose amortized
 cost is less than their actual cost.

iĉ
ic

∑∑
==

≥
n

i
i

n

i
i cc

11

ˆ

Accounting Method

33

Note: For all sequences of n operations, we must have

Savings

Account

Idea : When an operation’s amortized cost
 exceeds its actual cost , we assign the
 difference to specific objects in the data
 structure as credit. Credit can help pay
 for later operations whose amortized
 cost is less than their actual cost.

iĉ
ic

∑∑
==

≥
n

i
i

n

i
i cc

11

ˆ

Accounting Method

<latexit sha1_base64="gkRrlQ4J5XEynPpKw3AmNGLRAwA=">AAACF3icbVDLSsNAFJ34rPUVdelmsAiuQiJS3QhFNy4r9AVNDJPJpB06mYSZiVBD/sKNv+LGhSJudeffOGm70NYLFw7n3Mu59wQpo1LZ9rextLyyurZe2ahubm3v7Jp7+x2ZZAKTNk5YInoBkoRRTtqKKkZ6qSAoDhjpBqPrUu/eEyFpwltqnBIvRgNOI4qR0pRvWi0/R3EiFH0gYQEvoRsJhHOnyHnhyiz2c1rccegOkYLYp75Zsy17UnARODNQA7Nq+uaXGyY4iwlXmCEp+46dKi9H2hAzUlTdTJIU4REakL6GHMVEevnkrwIeayaEUSJ0c+1fsr839OVSjuNAT8ZIDeW8VpL/af1MRRdeTnmaKcLx1CjKGFQJLEOCIRUEKzbWAGFB9a0QD5EORukoqzoEZ/7lRdA5tZy6Vb89qzWuZnFUwCE4AifAAeegAW5AE7QBBo/gGbyCN+PJeDHejY/p6JIx2zkAf8r4/AGueKBB</latexit>

Tamortized =
1

n

nX

i

ĉi

34

34

〖Example〗 Stack with MultiPop(int k, Stack S)

34

〖Example〗 Stack with MultiPop(int k, Stack S)

ic for Push: ; Pop: ; and MultiPop:

34

〖Example〗 Stack with MultiPop(int k, Stack S)

ic for Push: ; Pop: ; and MultiPop:1

34

〖Example〗 Stack with MultiPop(int k, Stack S)

ic for Push: ; Pop: ; and MultiPop:1 1

34

〖Example〗 Stack with MultiPop(int k, Stack S)

ic for Push: ; Pop: ; and MultiPop:1 1 min (sizeof(S), k)

34

〖Example〗 Stack with MultiPop(int k, Stack S)

ic for Push: ; Pop: ; and MultiPop:1 1 min (sizeof(S), k)

iĉ for Push: ; Pop: ; and MultiPop:

34

〖Example〗 Stack with MultiPop(int k, Stack S)

ic for Push: ; Pop: ; and MultiPop:1 1 min (sizeof(S), k)

iĉ for Push: ; Pop: ; and MultiPop:2

34

〖Example〗 Stack with MultiPop(int k, Stack S)

ic for Push: ; Pop: ; and MultiPop:1 1 min (sizeof(S), k)

iĉ for Push: ; Pop: ; and MultiPop:2 0

34

〖Example〗 Stack with MultiPop(int k, Stack S)

ic for Push: ; Pop: ; and MultiPop:1 1 min (sizeof(S), k)

iĉ for Push: ; Pop: ; and MultiPop:2 0 0

34

〖Example〗 Stack with MultiPop(int k, Stack S)

ic for Push: ; Pop: ; and MultiPop:1 1 min (sizeof(S), k)

iĉ for Push: ; Pop: ; and MultiPop:2 0 0

Starting from an empty stack —— Credits for

34

〖Example〗 Stack with MultiPop(int k, Stack S)

ic for Push: ; Pop: ; and MultiPop:1 1 min (sizeof(S), k)

iĉ for Push: ; Pop: ; and MultiPop:2 0 0

Starting from an empty stack —— Credits for

Push: ; Pop: ; and MultiPop:

34

〖Example〗 Stack with MultiPop(int k, Stack S)

ic for Push: ; Pop: ; and MultiPop:1 1 min (sizeof(S), k)

iĉ for Push: ; Pop: ; and MultiPop:2 0 0

Starting from an empty stack —— Credits for

Push: ; Pop: ; and MultiPop:+1

34

〖Example〗 Stack with MultiPop(int k, Stack S)

ic for Push: ; Pop: ; and MultiPop:1 1 min (sizeof(S), k)

iĉ for Push: ; Pop: ; and MultiPop:2 0 0

Starting from an empty stack —— Credits for

Push: ; Pop: ; and MultiPop:+1 –1

34

〖Example〗 Stack with MultiPop(int k, Stack S)

ic for Push: ; Pop: ; and MultiPop:1 1 min (sizeof(S), k)

iĉ for Push: ; Pop: ; and MultiPop:2 0 0

Starting from an empty stack —— Credits for

Push: ; Pop: ; and MultiPop:+1 –1 –1 for each +1

34

〖Example〗 Stack with MultiPop(int k, Stack S)

ic for Push: ; Pop: ; and MultiPop:1 1 min (sizeof(S), k)

iĉ for Push: ; Pop: ; and MultiPop:2 0 0

Starting from an empty stack —— Credits for

Push: ; Pop: ; and MultiPop:+1 –1 –1 for each +1

sizeof(S) ≥ 0 Credits ≥ 0

34

〖Example〗 Stack with MultiPop(int k, Stack S)

ic for Push: ; Pop: ; and MultiPop:1 1 min (sizeof(S), k)

iĉ for Push: ; Pop: ; and MultiPop:2 0 0

Starting from an empty stack —— Credits for

Push: ; Pop: ; and MultiPop:+1 –1 –1 for each +1

sizeof(S) ≥ 0 Credits ≥ 0

∑∑
==

≥=
n

i
i

n

i
i ccnO

11

ˆ)(

34

〖Example〗 Stack with MultiPop(int k, Stack S)

ic for Push: ; Pop: ; and MultiPop:1 1 min (sizeof(S), k)

iĉ for Push: ; Pop: ; and MultiPop:2 0 0

Starting from an empty stack —— Credits for

Push: ; Pop: ; and MultiPop:+1 –1 –1 for each +1

sizeof(S) ≥ 0 Credits ≥ 0

∑∑
==

≥=
n

i
i

n

i
i ccnO

11

ˆ)(

Tamortized= O(n)/n = O(1)

34

〖Example〗 Stack with MultiPop(int k, Stack S)

ic for Push: ; Pop: ; and MultiPop:1 1 min (sizeof(S), k)

iĉ for Push: ; Pop: ; and MultiPop:2 0 0

Starting from an empty stack —— Credits for

Push: ; Pop: ; and MultiPop:+1 –1 –1 for each +1

sizeof(S) ≥ 0 Credits ≥ 0

∑∑
==

≥=
n

i
i

n

i
i ccnO

11

ˆ)(

Tamortized= O(n)/n = O(1)

The amortized
costs of the operations

may differ from
each other

35

• Why some problems have smaller amortized time cost?

• The structure of the problem provides the constraints:

• Represent the states of the structure as potential functions.

• The potential function is bounded by the structural constraints.

• Bound the total cost by the increase of potential.

Potential Method

35

• Why some problems have smaller amortized time cost?

• The structure of the problem provides the constraints:

• Represent the states of the structure as potential functions.

• The potential function is bounded by the structural constraints.

• Bound the total cost by the increase of potential.

Potential Method

All operations can not exceed the structural constraints.

36

Potential Method

36

Idea : Take a closer look at the credit --

Potential Method

36

Idea : Take a closer look at the credit --

)()(ˆ 1−Φ−Φ==− iiiii DDCreditcc

Potential Method

36

Idea : Take a closer look at the credit --

)()(ˆ 1−Φ−Φ==− iiiii DDCreditcc

Potential function

Potential Method

36

Idea : Take a closer look at the credit --

)()(ˆ 1−Φ−Φ==− iiiii DDCreditcc

Potential function

()∑∑
=

−
=

Φ−Φ+=
n

i
iii

n

i
i DDcc

1
1

1
)()(ˆ

Potential Method

36

Idea : Take a closer look at the credit --

)()(ˆ 1−Φ−Φ==− iiiii DDCreditcc

Potential function

()∑∑
=

−
=

Φ−Φ+=
n

i
iii

n

i
i DDcc

1
1

1
)()(ˆ

)()(0
1

DDc n

n

i
i Φ−Φ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

Potential Method

36

Idea : Take a closer look at the credit --

)()(ˆ 1−Φ−Φ==− iiiii DDCreditcc

Potential function

()∑∑
=

−
=

Φ−Φ+=
n

i
iii

n

i
i DDcc

1
1

1
)()(ˆ

)()(0
1

DDc n

n

i
i Φ−Φ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

= ≥ 0

Potential Method

36

Idea : Take a closer look at the credit --

)()(ˆ 1−Φ−Φ==− iiiii DDCreditcc

Potential function

()∑∑
=

−
=

Φ−Φ+=
n

i
iii

n

i
i DDcc

1
1

1
)()(ˆ

)()(0
1

DDc n

n

i
i Φ−Φ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

= ≥ 0

In general, a good potential function should always assume its minimum at
the start of the sequence.

Potential Method

36

Idea : Take a closer look at the credit --

)()(ˆ 1−Φ−Φ==− iiiii DDCreditcc

Potential function

()∑∑
=

−
=

Φ−Φ+=
n

i
iii

n

i
i DDcc

1
1

1
)()(ˆ

)()(0
1

DDc n

n

i
i Φ−Φ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

= ≥ 0

In general, a good potential function should always assume its minimum at
the start of the sequence.

Potential Method

Should be bounded.

37

AVL Trees, Splay Trees, and Amortized Analysis

37

AVL Trees, Splay Trees, and Amortized Analysis

〖Example〗 Stack with MultiPop(int k, Stack S)

37

AVL Trees, Splay Trees, and Amortized Analysis

〖Example〗 Stack with MultiPop(int k, Stack S)

Di =

Φ(Di) =

37

AVL Trees, Splay Trees, and Amortized Analysis

〖Example〗 Stack with MultiPop(int k, Stack S)

Di =

Φ(Di) =

the stack that results after the i-th operation

37

AVL Trees, Splay Trees, and Amortized Analysis

〖Example〗 Stack with MultiPop(int k, Stack S)

Di =

Φ(Di) =

the stack that results after the i-th operation

the number of objects in the stack Di

37

AVL Trees, Splay Trees, and Amortized Analysis

〖Example〗 Stack with MultiPop(int k, Stack S)

Di =

Φ(Di) =

the stack that results after the i-th operation

the number of objects in the stack Di

)(0)(0DDi Φ=≥Φ

37

AVL Trees, Splay Trees, and Amortized Analysis

〖Example〗 Stack with MultiPop(int k, Stack S)

Di =

Φ(Di) =

the stack that results after the i-th operation

the number of objects in the stack Di

)(0)(0DDi Φ=≥Φ

Push:

37

AVL Trees, Splay Trees, and Amortized Analysis

〖Example〗 Stack with MultiPop(int k, Stack S)

Di =

Φ(Di) =

the stack that results after the i-th operation

the number of objects in the stack Di

)(0)(0DDi Φ=≥Φ

Push: 1)()1)(()()(1 =−+=Φ−Φ − SsizeofSsizeofDD ii

37

AVL Trees, Splay Trees, and Amortized Analysis

〖Example〗 Stack with MultiPop(int k, Stack S)

Di =

Φ(Di) =

the stack that results after the i-th operation

the number of objects in the stack Di

)(0)(0DDi Φ=≥Φ

Push: 1)()1)(()()(1 =−+=Φ−Φ − SsizeofSsizeofDD ii

211)()(ˆ 1 =+=Φ−Φ+= −iiii DDcc

37

AVL Trees, Splay Trees, and Amortized Analysis

〖Example〗 Stack with MultiPop(int k, Stack S)

Di =

Φ(Di) =

the stack that results after the i-th operation

the number of objects in the stack Di

)(0)(0DDi Φ=≥Φ

Push: 1)()1)(()()(1 =−+=Φ−Φ − SsizeofSsizeofDD ii

211)()(ˆ 1 =+=Φ−Φ+= −iiii DDcc
Pop:

37

AVL Trees, Splay Trees, and Amortized Analysis

〖Example〗 Stack with MultiPop(int k, Stack S)

Di =

Φ(Di) =

the stack that results after the i-th operation

the number of objects in the stack Di

)(0)(0DDi Φ=≥Φ

Push: 1)()1)(()()(1 =−+=Φ−Φ − SsizeofSsizeofDD ii

211)()(ˆ 1 =+=Φ−Φ+= −iiii DDcc
Pop: 1)()1)(()()(1 −=−−=Φ−Φ − SsizeofSsizeofDD ii

37

AVL Trees, Splay Trees, and Amortized Analysis

〖Example〗 Stack with MultiPop(int k, Stack S)

Di =

Φ(Di) =

the stack that results after the i-th operation

the number of objects in the stack Di

)(0)(0DDi Φ=≥Φ

Push: 1)()1)(()()(1 =−+=Φ−Φ − SsizeofSsizeofDD ii

211)()(ˆ 1 =+=Φ−Φ+= −iiii DDcc
Pop: 1)()1)(()()(1 −=−−=Φ−Φ − SsizeofSsizeofDD ii

011)()(ˆ 1 =−=Φ−Φ+= −iiii DDcc

37

AVL Trees, Splay Trees, and Amortized Analysis

〖Example〗 Stack with MultiPop(int k, Stack S)

Di =

Φ(Di) =

the stack that results after the i-th operation

the number of objects in the stack Di

)(0)(0DDi Φ=≥Φ

Push: 1)()1)(()()(1 =−+=Φ−Φ − SsizeofSsizeofDD ii

211)()(ˆ 1 =+=Φ−Φ+= −iiii DDcc
Pop: 1)()1)(()()(1 −=−−=Φ−Φ − SsizeofSsizeofDD ii

011)()(ˆ 1 =−=Φ−Φ+= −iiii DDcc
MultiPop:

37

AVL Trees, Splay Trees, and Amortized Analysis

〖Example〗 Stack with MultiPop(int k, Stack S)

Di =

Φ(Di) =

the stack that results after the i-th operation

the number of objects in the stack Di

)(0)(0DDi Φ=≥Φ

Push: 1)()1)(()()(1 =−+=Φ−Φ − SsizeofSsizeofDD ii

211)()(ˆ 1 =+=Φ−Φ+= −iiii DDcc
Pop: 1)()1)(()()(1 −=−−=Φ−Φ − SsizeofSsizeofDD ii

011)()(ˆ 1 =−=Φ−Φ+= −iiii DDcc
MultiPop: kSsizeofkSsizeofDD ii ʹ−=−ʹ−=Φ−Φ −)())(()()(1

37

AVL Trees, Splay Trees, and Amortized Analysis

〖Example〗 Stack with MultiPop(int k, Stack S)

Di =

Φ(Di) =

the stack that results after the i-th operation

the number of objects in the stack Di

)(0)(0DDi Φ=≥Φ

Push: 1)()1)(()()(1 =−+=Φ−Φ − SsizeofSsizeofDD ii

211)()(ˆ 1 =+=Φ−Φ+= −iiii DDcc
Pop: 1)()1)(()()(1 −=−−=Φ−Φ − SsizeofSsizeofDD ii

011)()(ˆ 1 =−=Φ−Φ+= −iiii DDcc
MultiPop: kSsizeofkSsizeofDD ii ʹ−=−ʹ−=Φ−Φ −)())(()()(1

0)()(ˆ 1 =ʹ−ʹ=Φ−Φ+= − kkDDcc iiii

37

AVL Trees, Splay Trees, and Amortized Analysis

〖Example〗 Stack with MultiPop(int k, Stack S)

Di =

Φ(Di) =

the stack that results after the i-th operation

the number of objects in the stack Di

)(0)(0DDi Φ=≥Φ

Push: 1)()1)(()()(1 =−+=Φ−Φ − SsizeofSsizeofDD ii

211)()(ˆ 1 =+=Φ−Φ+= −iiii DDcc
Pop: 1)()1)(()()(1 −=−−=Φ−Φ − SsizeofSsizeofDD ii

011)()(ˆ 1 =−=Φ−Φ+= −iiii DDcc
MultiPop: kSsizeofkSsizeofDD ii ʹ−=−ʹ−=Φ−Φ −)())(()()(1

0)()(ˆ 1 =ʹ−ʹ=Φ−Φ+= − kkDDcc iiii

)()1(ˆ
11

nOOc
n

i

n

i
i ==∑∑

==

37

AVL Trees, Splay Trees, and Amortized Analysis

〖Example〗 Stack with MultiPop(int k, Stack S)

Di =

Φ(Di) =

the stack that results after the i-th operation

the number of objects in the stack Di

)(0)(0DDi Φ=≥Φ

Push: 1)()1)(()()(1 =−+=Φ−Φ − SsizeofSsizeofDD ii

211)()(ˆ 1 =+=Φ−Φ+= −iiii DDcc
Pop: 1)()1)(()()(1 −=−−=Φ−Φ − SsizeofSsizeofDD ii

011)()(ˆ 1 =−=Φ−Φ+= −iiii DDcc
MultiPop: kSsizeofkSsizeofDD ii ʹ−=−ʹ−=Φ−Φ −)())(()()(1

0)()(ˆ 1 =ʹ−ʹ=Φ−Φ+= − kkDDcc iiii

)()1(ˆ
11

nOOc
n

i

n

i
i ==∑∑

==
∑
=

≥
n

i
ic

1

37

AVL Trees, Splay Trees, and Amortized Analysis

〖Example〗 Stack with MultiPop(int k, Stack S)

Di =

Φ(Di) =

the stack that results after the i-th operation

the number of objects in the stack Di

)(0)(0DDi Φ=≥Φ

Push: 1)()1)(()()(1 =−+=Φ−Φ − SsizeofSsizeofDD ii

211)()(ˆ 1 =+=Φ−Φ+= −iiii DDcc
Pop: 1)()1)(()()(1 −=−−=Φ−Φ − SsizeofSsizeofDD ii

011)()(ˆ 1 =−=Φ−Φ+= −iiii DDcc
MultiPop: kSsizeofkSsizeofDD ii ʹ−=−ʹ−=Φ−Φ −)())(()()(1

0)()(ˆ 1 =ʹ−ʹ=Φ−Φ+= − kkDDcc iiii

)()1(ˆ
11

nOOc
n

i

n

i
i ==∑∑

==
∑
=

≥
n

i
ic

1
Tamortized= O(n)/n = O(1)

38

• What we want to bound?

• The amortized cost of a sequence of operations, e.g. search,
delete, insert, split…

• Each operation involves slaying: a subsequence of rotations.

• The potential function is built on a state of tree. Let’s consider the
amortized cost of sequence of rotations first.

Analysis of Splay Trees

Tree1 Tree2 Tree3
…rotation rotation rotation

<latexit sha1_base64="OpipjR7WAZaT0I7m/V17+pS2OKA=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9kVqR6LXjxWsB/QLiWbZtvYbBKSrFCW/gcvHhTx6v/x5r8xbfegrQ8GHu/NMDMvUpwZ6/vfXmFtfWNzq7hd2tnd2z8oHx61jEw1oU0iudSdCBvKmaBNyyynHaUpTiJO29H4dua3n6g2TIoHO1E0TPBQsJgRbJ3U6qkR6wf9csWv+nOgVRLkpAI5Gv3yV28gSZpQYQnHxnQDX9kww9oywum01EsNVZiM8ZB2HRU4oSbM5tdO0ZlTBiiW2pWwaK7+nshwYswkiVxngu3ILHsz8T+vm9r4OsyYUKmlgiwWxSlHVqLZ62jANCWWTxzBRDN3KyIjrDGxLqCSCyFYfnmVtC6qQa1au7+s1G/yOIpwAqdwDgFcQR3uoAFNIPAIz/AKb570Xrx372PRWvDymWP4A+/zBz7Yju4=</latexit>

�1
<latexit sha1_base64="EP27LbjSsfnkhTZzpBnpiY+V7Gk=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvgqewWqR6LXjxWsLXQLiWbZtvYbLIkWaEs/Q9ePCji1f/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8La+sbmVnG7tLO7t39QPjxqG5VqylpUCaU7ITFMcMlallvBOolmJA4FewjHNzP/4Ylpw5W8t5OEBTEZSh5xSqyT2r1kxPu1frniVb058Crxc1KBHM1++as3UDSNmbRUEGO6vpfYICPacirYtNRLDUsIHZMh6zoqScxMkM2vneIzpwxwpLQrafFc/T2RkdiYSRy6zpjYkVn2ZuJ/Xje10VWQcZmklkm6WBSlAluFZ6/jAdeMWjFxhFDN3a2Yjogm1LqASi4Ef/nlVdKuVf16tX53UWlc53EU4QRO4Rx8uIQG3EITWkDhEZ7hFd6QQi/oHX0sWgsonzmGP0CfP0Bcju8=</latexit>

�2
<latexit sha1_base64="q5vzkwD4DXVdoQ8ZTmKF/tjhOGU=">AAAB7XicbVBNSwMxEJ31s9avqkcvwSJ4Krsq1WPRi8cK9gPapWTTbBubTUKSFcrS/+DFgyJe/T/e/Dem7R609cHA470ZZuZFijNjff/bW1ldW9/YLGwVt3d29/ZLB4dNI1NNaINILnU7woZyJmjDMstpW2mKk4jTVjS6nfqtJ6oNk+LBjhUNEzwQLGYEWyc1u2rIehe9Utmv+DOgZRLkpAw56r3SV7cvSZpQYQnHxnQCX9kww9oywumk2E0NVZiM8IB2HBU4oSbMZtdO0KlT+iiW2pWwaKb+nshwYsw4iVxngu3QLHpT8T+vk9r4OsyYUKmlgswXxSlHVqLp66jPNCWWjx3BRDN3KyJDrDGxLqCiCyFYfHmZNM8rQbVSvb8s127yOApwDCdwBgFcQQ3uoA4NIPAIz/AKb570Xrx372PeuuLlM0fwB97nD0HgjvA=</latexit>

�3

39

39

〖Example〗 Splay Trees: Tamortized = O(log N)

39

〖Example〗 Splay Trees: Tamortized = O(log N)

Di =

Φ(Di) =

39

〖Example〗 Splay Trees: Tamortized = O(log N)

Di =

Φ(Di) =

the root of the resulting tree

39

〖Example〗 Splay Trees: Tamortized = O(log N)

Di =

Φ(Di) =

the root of the resulting tree
must increase by at most O(log N) over n steps, AND will also
cancel out the number of rotations (zig:1; zig-zag:2; zig-zig:2).

39

〖Example〗 Splay Trees: Tamortized = O(log N)

Di =

Φ(Di) =

the root of the resulting tree
must increase by at most O(log N) over n steps, AND will also
cancel out the number of rotations (zig:1; zig-zag:2; zig-zig:2).

∑
∈

=Φ
Ti

iST)(log)(where S(i) is the number of descendants of
i (i included).

39

〖Example〗 Splay Trees: Tamortized = O(log N)

Di =

Φ(Di) =

the root of the resulting tree
must increase by at most O(log N) over n steps, AND will also
cancel out the number of rotations (zig:1; zig-zag:2; zig-zig:2).

∑
∈

=Φ
Ti

iST)(log)(where S(i) is the number of descendants of
i (i included).

Rank of the subtree
≈ Height of the tree

39

〖Example〗 Splay Trees: Tamortized = O(log N)

Di =

Φ(Di) =

the root of the resulting tree
must increase by at most O(log N) over n steps, AND will also
cancel out the number of rotations (zig:1; zig-zag:2; zig-zig:2).

∑
∈

=Φ
Ti

iST)(log)(where S(i) is the number of descendants of
i (i included).

Rank of the subtree
≈ Height of the tree

Why not simply use the heights
of the trees?

40

Zig-zag G

D
P

A
X

B C

X

G

C D

P

A B

Double rotation

Zig-zig G

D
P

C
X

A B

Single rotation

X

A
P

B
G

DC

Zig P

C
X

A B

X

C

PA

B

Single rotation

∑
∈

=Φ
Ti

iRankT)()(

40

Zig-zag G

D
P

A
X

B C

X

G

C D

P

A B

Double rotation

Zig-zig G

D
P

C
X

A B

Single rotation

X

A
P

B
G

DC

Zig P

C
X

A B

X

C

PA

B

Single rotation

∑
∈

=Φ
Ti

iRankT)()(

)()(1
)()(
)()(1ˆ

12

12

12

XRXR
PRPR
XRXRci

−+≤

−+

−+=

40

Zig-zag G

D
P

A
X

B C

X

G

C D

P

A B

Double rotation

Zig-zig G

D
P

C
X

A B

Single rotation

X

A
P

B
G

DC

Zig P

C
X

A B

X

C

PA

B

Single rotation

∑
∈

=Φ
Ti

iRankT)()(

)()(1
)()(
)()(1ˆ

12

12

12

XRXR
PRPR
XRXRci

−+≤

−+

−+=

40

Zig-zag G

D
P

A
X

B C

X

G

C D

P

A B

Double rotation

Zig-zig G

D
P

C
X

A B

Single rotation

X

A
P

B
G

DC

Zig P

C
X

A B

X

C

PA

B

Single rotation

∑
∈

=Φ
Ti

iRankT)()(

)()(1
)()(
)()(1ˆ

12

12

12

XRXR
PRPR
XRXRci

−+≤

−+

−+=

())()(2
)()(
)()(
)()(2ˆ

12

12

12

12

XRXR
GRGR
PRPR
XRXRci

−≤

−+

−+

−+=

40

Zig-zag G

D
P

A
X

B C

X

G

C D

P

A B

Double rotation

Zig-zig G

D
P

C
X

A B

Single rotation

X

A
P

B
G

DC

Zig P

C
X

A B

X

C

PA

B

Single rotation

∑
∈

=Φ
Ti

iRankT)()(

)()(1
)()(
)()(1ˆ

12

12

12

XRXR
PRPR
XRXRci

−+≤

−+

−+=

())()(2
)()(
)()(
)()(2ˆ

12

12

12

12

XRXR
GRGR
PRPR
XRXRci

−≤

−+

−+

−+=

40

Zig-zag G

D
P

A
X

B C

X

G

C D

P

A B

Double rotation

Zig-zig G

D
P

C
X

A B

Single rotation

X

A
P

B
G

DC

Zig P

C
X

A B

X

C

PA

B

Single rotation

∑
∈

=Φ
Ti

iRankT)()(

)()(1
)()(
)()(1ˆ

12

12

12

XRXR
PRPR
XRXRci

−+≤

−+

−+=

())()(2
)()(
)()(
)()(2ˆ

12

12

12

12

XRXR
GRGR
PRPR
XRXRci

−≤

−+

−+

−+=

40

Zig-zag G

D
P

A
X

B C

X

G

C D

P

A B

Double rotation

Zig-zig G

D
P

C
X

A B

Single rotation

X

A
P

B
G

DC

Zig P

C
X

A B

X

C

PA

B

Single rotation

∑
∈

=Φ
Ti

iRankT)()(

)()(1
)()(
)()(1ˆ

12

12

12

XRXR
PRPR
XRXRci

−+≤

−+

−+=

())()(2
)()(
)()(
)()(2ˆ

12

12

12

12

XRXR
GRGR
PRPR
XRXRci

−≤

−+

−+

−+=

Lemma 11.4 on [Weiss] p.448

40

Zig-zag G

D
P

A
X

B C

X

G

C D

P

A B

Double rotation

Zig-zig G

D
P

C
X

A B

Single rotation

X

A
P

B
G

DC

Zig P

C
X

A B

X

C

PA

B

Single rotation

∑
∈

=Φ
Ti

iRankT)()(

)()(1
)()(
)()(1ˆ

12

12

12

XRXR
PRPR
XRXRci

−+≤

−+

−+=

())()(2
)()(
)()(
)()(2ˆ

12

12

12

12

XRXR
GRGR
PRPR
XRXRci

−≤

−+

−+

−+=

Lemma 11.4 on [Weiss] p.448

())()(3
)()(
)()(
)()(2ˆ

12

12

12

12

XRXR
GRGR
PRPR
XRXRci

−≤

−+

−+

−+=

40

Zig-zag G

D
P

A
X

B C

X

G

C D

P

A B

Double rotation

Zig-zig G

D
P

C
X

A B

Single rotation

X

A
P

B
G

DC

Zig P

C
X

A B

X

C

PA

B

Single rotation

∑
∈

=Φ
Ti

iRankT)()(

)()(1
)()(
)()(1ˆ

12

12

12

XRXR
PRPR
XRXRci

−+≤

−+

−+=

())()(2
)()(
)()(
)()(2ˆ

12

12

12

12

XRXR
GRGR
PRPR
XRXRci

−≤

−+

−+

−+=

Lemma 11.4 on [Weiss] p.448

())()(3
)()(
)()(
)()(2ˆ

12

12

12

12

XRXR
GRGR
PRPR
XRXRci

−≤

−+

−+

−+=

40

Zig-zag G

D
P

A
X

B C

X

G

C D

P

A B

Double rotation

Zig-zig G

D
P

C
X

A B

Single rotation

X

A
P

B
G

DC

Zig P

C
X

A B

X

C

PA

B

Single rotation

∑
∈

=Φ
Ti

iRankT)()(

)()(1
)()(
)()(1ˆ

12

12

12

XRXR
PRPR
XRXRci

−+≤

−+

−+=

())()(2
)()(
)()(
)()(2ˆ

12

12

12

12

XRXR
GRGR
PRPR
XRXRci

−≤

−+

−+

−+=

Lemma 11.4 on [Weiss] p.448

())()(3
)()(
)()(
)()(2ˆ

12

12

12

12

XRXR
GRGR
PRPR
XRXRci

−≤

−+

−+

−+=

())()(31ˆ 12 XRXRci −+≤

40

Zig-zag G

D
P

A
X

B C

X

G

C D

P

A B

Double rotation

Zig-zig G

D
P

C
X

A B

Single rotation

X

A
P

B
G

DC

Zig P

C
X

A B

X

C

PA

B

Single rotation

∑
∈

=Φ
Ti

iRankT)()(

)()(1
)()(
)()(1ˆ

12

12

12

XRXR
PRPR
XRXRci

−+≤

−+

−+=

())()(2
)()(
)()(
)()(2ˆ

12

12

12

12

XRXR
GRGR
PRPR
XRXRci

−≤

−+

−+

−+=

Lemma 11.4 on [Weiss] p.448

())()(3
)()(
)()(
)()(2ˆ

12

12

12

12

XRXR
GRGR
PRPR
XRXRci

−≤

−+

−+

−+=

())()(31ˆ 12 XRXRci −+≤

【Lemma】 The total cost of to splay a tree by a series of rotations
with root T at node X is at most 3(R(T) – R (X)) + 1.

<latexit sha1_base64="oX03TYL/1/KFkAH2hl0kl7usXuw=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VbC00oWy2m3bp7ibubgol9Hd48aCIV3+MN/+NmzYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRR8epIrRNYh6rbog15UzStmGG026iKBYhp4/h+Db3HydUaRbLBzNNaCDwULKIEWysFPg6FcgfYYNIn/WrNbfuzoFWiVeQGhRo9atf/iAmqaDSEI617nluYoIMK8MIp7OKn2qaYDLGQ9qzVGJBdZDNj56hM6sMUBQrW9Luz9XfExkWWk9FaDsFNiO97OXif14vNdF1kDGZpIZKslgUpRyZGOUJoAFTlBg+tQQTxeytiIywwsTYnCo2BG/55VXSuah7jXrj/rLWvCniKMMJnMI5eHAFTbiDFrSBwBM8wyu8ORPnxXl3PhatJaeYOYY/cD5/AC7Qkbw=</latexit>X
ĉi

Amortized Cost of Splay Trees

41

【Lemma】 The total cost of to splay a tree by a series of rotations
with root T at node X is at most 3(R(T) – R (X)) + 1.

<latexit sha1_base64="oX03TYL/1/KFkAH2hl0kl7usXuw=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VbC00oWy2m3bp7ibubgol9Hd48aCIV3+MN/+NmzYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRR8epIrRNYh6rbog15UzStmGG026iKBYhp4/h+Db3HydUaRbLBzNNaCDwULKIEWysFPg6FcgfYYNIn/WrNbfuzoFWiVeQGhRo9atf/iAmqaDSEI617nluYoIMK8MIp7OKn2qaYDLGQ9qzVGJBdZDNj56hM6sMUBQrW9Luz9XfExkWWk9FaDsFNiO97OXif14vNdF1kDGZpIZKslgUpRyZGOUJoAFTlBg+tQQTxeytiIywwsTYnCo2BG/55VXSuah7jXrj/rLWvCniKMMJnMI5eHAFTbiDFrSBwBM8wyu8ORPnxXl3PhatJaeYOYY/cD5/AC7Qkbw=</latexit>X
ĉi

Amortized Cost of Splay Trees

41

()∑∑
=

−
=

Φ−Φ+=
n

i
iii

n

i
i DDcc

1
1

1
)()(ˆ

)()(0
1

DDc n

n

i
i Φ−Φ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

= ≥ 0

【Lemma】 The total cost of to splay a tree by a series of rotations
with root T at node X is at most 3(R(T) – R (X)) + 1.

<latexit sha1_base64="oX03TYL/1/KFkAH2hl0kl7usXuw=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VbC00oWy2m3bp7ibubgol9Hd48aCIV3+MN/+NmzYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRR8epIrRNYh6rbog15UzStmGG026iKBYhp4/h+Db3HydUaRbLBzNNaCDwULKIEWysFPg6FcgfYYNIn/WrNbfuzoFWiVeQGhRo9atf/iAmqaDSEI617nluYoIMK8MIp7OKn2qaYDLGQ9qzVGJBdZDNj56hM6sMUBQrW9Luz9XfExkWWk9FaDsFNiO97OXif14vNdF1kDGZpIZKslgUpRyZGOUJoAFTlBg+tQQTxeytiIywwsTYnCo2BG/55VXSuah7jXrj/rLWvCniKMMJnMI5eHAFTbiDFrSBwBM8wyu8ORPnxXl3PhatJaeYOYY/cD5/AC7Qkbw=</latexit>X
ĉi

Amortized Cost of Splay Trees

41

()∑∑
=

−
=

Φ−Φ+=
n

i
iii

n

i
i DDcc

1
1

1
)()(ˆ

)()(0
1

DDc n

n

i
i Φ−Φ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

= ≥ 0

Should assume
to start from
an empty tree

【Lemma】 The total cost of to splay a tree by a series of rotations
with root T at node X is at most 3(R(T) – R (X)) + 1.

<latexit sha1_base64="oX03TYL/1/KFkAH2hl0kl7usXuw=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VbC00oWy2m3bp7ibubgol9Hd48aCIV3+MN/+NmzYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRR8epIrRNYh6rbog15UzStmGG026iKBYhp4/h+Db3HydUaRbLBzNNaCDwULKIEWysFPg6FcgfYYNIn/WrNbfuzoFWiVeQGhRo9atf/iAmqaDSEI617nluYoIMK8MIp7OKn2qaYDLGQ9qzVGJBdZDNj56hM6sMUBQrW9Luz9XfExkWWk9FaDsFNiO97OXif14vNdF1kDGZpIZKslgUpRyZGOUJoAFTlBg+tQQTxeytiIywwsTYnCo2BG/55VXSuah7jXrj/rLWvCniKMMJnMI5eHAFTbiDFrSBwBM8wyu8ORPnxXl3PhatJaeYOYY/cD5/AC7Qkbw=</latexit>X
ĉi

Amortized Cost of Splay Trees

41

()∑∑
=

−
=

Φ−Φ+=
n

i
iii

n

i
i DDcc

1
1

1
)()(ˆ

)()(0
1

DDc n

n

i
i Φ−Φ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

= ≥ 0

Should assume
to start from
an empty tree

We should also consider the influences of other steps other than rotations
on the potential functions.

Fortunately, their influences are minor.

【Lemma】 The total cost of to splay a tree by a series of rotations
with root T at node X is at most 3(R(T) – R (X)) + 1.

<latexit sha1_base64="oX03TYL/1/KFkAH2hl0kl7usXuw=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VbC00oWy2m3bp7ibubgol9Hd48aCIV3+MN/+NmzYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRR8epIrRNYh6rbog15UzStmGG026iKBYhp4/h+Db3HydUaRbLBzNNaCDwULKIEWysFPg6FcgfYYNIn/WrNbfuzoFWiVeQGhRo9atf/iAmqaDSEI617nluYoIMK8MIp7OKn2qaYDLGQ9qzVGJBdZDNj56hM6sMUBQrW9Luz9XfExkWWk9FaDsFNiO97OXif14vNdF1kDGZpIZKslgUpRyZGOUJoAFTlBg+tQQTxeytiIywwsTYnCo2BG/55VXSuah7jXrj/rLWvCniKMMJnMI5eHAFTbiDFrSBwBM8wyu8ORPnxXl3PhatJaeYOYY/cD5/AC7Qkbw=</latexit>X
ĉi

Amortized Cost of Splay Trees

41

()∑∑
=

−
=

Φ−Φ+=
n

i
iii

n

i
i DDcc

1
1

1
)()(ˆ

)()(0
1

DDc n

n

i
i Φ−Φ+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

= ≥ 0

Should assume
to start from
an empty tree

We should also consider the influences of other steps other than rotations
on the potential functions.

Fortunately, their influences are minor.

【Lemma】 The total cost of to splay a tree by a series of rotations
with root T at node X is at most 3(R(T) – R (X)) + 1.

<latexit sha1_base64="oX03TYL/1/KFkAH2hl0kl7usXuw=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48VbC00oWy2m3bp7ibubgol9Hd48aCIV3+MN/+NmzYHbX0w8Hhvhpl5YcKZNq777ZTW1jc2t8rblZ3dvf2D6uFRR8epIrRNYh6rbog15UzStmGG026iKBYhp4/h+Db3HydUaRbLBzNNaCDwULKIEWysFPg6FcgfYYNIn/WrNbfuzoFWiVeQGhRo9atf/iAmqaDSEI617nluYoIMK8MIp7OKn2qaYDLGQ9qzVGJBdZDNj56hM6sMUBQrW9Luz9XfExkWWk9FaDsFNiO97OXif14vNdF1kDGZpIZKslgUpRyZGOUJoAFTlBg+tQQTxeytiIywwsTYnCo2BG/55VXSuah7jXrj/rLWvCniKMMJnMI5eHAFTbiDFrSBwBM8wyu8ORPnxXl3PhatJaeYOYY/cD5/AC7Qkbw=</latexit>X
ĉi

Theorem:
The amortized cost of a series of operations started from an empty splay
tree is of order O(log N), where N is the number of all nodes involved in

the operations.
Read the original splay tree paper for details.

bounded by log(N)

Balanced Binary Search Trees (1)

42

• Binary search trees

• AVL trees

• Splay trees

• Amortized analysis

• Take-home messages

Take-Home Messages

• Balanced binary search trees:

• Reduce depth to reduce cost of operations.

• AVL trees:

• Satisfying height-balanced condition. Conduct rotations to achieve
self-balancing once the condition is violated.

• Splay trees:

• Achieving self-balancing by conducting splaying steps for any
operations.

• Amortized analysis:

• Averaging the total cost which is limited by the structure.
43

44

Thanks for your attention!
Discussions?

45

Reference
Data Structure and Algorithm Analysis in C (2nd Edition)： Chap. 4.4-4.5, 11.5.

Introduction to Algorithms (4th Edition): Chap.16.

Daniel Dominic Sleator, Robert Endre Tarjan:
Self-Adjusting Binary Search Trees. Journal of ACM 32(3): 652-686 (1985)

