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Reinforcement Learning

Basics

e Markov decision process
e RL with known model

e RL with unknown model

e Policy gradient & actor-critic methods
Deep reinforcement learning
Integrating learning and planning

RL from human preference

Take-home messages



e Basics

Reinforcement Learning




Decision Making




Decision Making

e The agent faces with a series of “states”.



Decision Making

e The agent faces with a series of “states”.

¢ Need to choose the corresponding “actions”.



Decision Making

e The agent faces with a series of “states”.

¢ Need to choose the corresponding “actions”.

In this lecture,

e Fach action has a utility/cost. . " ,
we given utility a name: reward.



Decision Making

The agent faces with a series of “states”.

Need to choose the corresponding “actions”.

In this lecture,

Each action has a utility/cost. . " ,
we given utility a name: reward.

Target: maximize the total reward in a decision sequence
by always choosing the right action.
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e Conduct action in any state of an environment.

agent environment
state reward

action

In most problems, the agent needs to do a sequence of actions
w.r.t.a sequence of states.



Model of the Environment

To make decisions in the environment, the agent usually needs a model
of the environment to know how the things go on.
Where does this model come from?
Given by the problem (external) or built by the agent! (internal)




Internal vs. External Model

A decision-making agent can make use of external model when available,
or build its own internal model when unavailable.

environment
(external model)

action



Internal vs. External Model

A decision-making agent can make use of external model when available,
or build its own internal model when unavailable.

But what if both the external and internal models can not be used?

internal model

environment

agent partial utility ~ (external model)
. state

action
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Reinforcement Learning

® Decision making is to find the optimal policy:

® Decide best actions on all states.
* No labeled <state, action> data, only receive reward.

® The target is to maximize the long term total reward.

® Search-based decision making:

¢ When the model is known, and the search cost is reasonable.

® Reinforcement learning:

® Decision making in unknown model or search cost is too high.



Reinforcement Learning

e Markov decision process
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Markov Decision Process

¢ How to model a maze problem?

State: the current position. ®
Action: left, right, up, down.

Transition: where is the next position when take an action?
Reward: how good is it instantly when take an action?

Discount factor: How much the current action influences future!?

Markov decision process (MDP) is the decision making model in RL with
specific assumptions.

11



Mathematical Formulation

e A Markov Decision Process (MDP) is a five-tuple

<SS, AP, R,~v>
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Mathematical Formulation

e A Markov Decision Process (MDP) is a five-tuple
<S, AP R,~> &
e S — The space of possible states (cont. or discrete)
e A — The space of possible actions (cont. or discrete)
e P :p(sta1|St,as) — The transition function (distribution)

e R:S X AxS —R— The reward function

e ' — The discount factor of rewards

The transition and reward functions can be stochastic!
12



The Markov Property

“The future is independent of the past given the present”
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The Markov Property

“The future is independent of the past given the present”

¢ The Markov property:

p(St+1/8t,at) = p(sty1]s1, s2, ...S¢, ar)

® The next state is only decided by the current state and action.

e The current state is a sufficient statistic.

¢ Non-Markovian decision problem:
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The Learning Agent

e The agent takes a series of actions, experiences a series of
states, and receives a series of rewards:

{817 aj, Tl}) {827 as, TZ}) {837 as, TS}---

e policy: function p(a|s) used to select actions on any states.
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The Learning Agent

The agent takes a series of actions, experiences a series of
states, and receives a series of rewards:

{817 aj, Tl}) {827 as, TZ}) {837 as, TS}---

policy: function p(a|s) used to select actions on any states.

The target is to find the optimal policy to maximize the
discounted total reward along the timeline:

rars +rs 4= A
t=1

The discount factor measures how much the current action
cares about the long term effect.
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Value Functions:
State Value Function V

e The state value function of a given policy is the expected total
reward start from a given state, then follow the policy:

VW(S) — 4:7T,p(8|s,a,) [thrt‘SO — S}
t=0

e The optimal policy have the optimal value function:

Vs, Vie(s) =maxV,(s)

T

15



Value Functions:
Action-State Value Function ()

e The action-state value function of a given policy is the
expected total reward start from a given state, execute a given
action, then follow the policy:

Q?T(S7 CL) — IE41"7?,10(s|s,a) {ZWtTtISO — S,a0 = a}
t=0

® The optimal deterministic policy chooses the optimal action:

7 (s) = argmax Q. (s, a)

If the optimal action-state value function is known, so is the optimal policy!

16



Bellman Equation

e For the state value function,

VTF(S) — EW(S),p(s|s,a) {Z’}/tTt‘SO — S}

t=0

— Eﬂ'(so),p(sﬂso,ao) _TO - /y]E’TI'(S),p(S|S,CL) [Z Vt_l’rt\sl] ’SO — S}

t=1

— EW(80)7P(31|80,QO) _TO T VVW(Sl)’SO — S}

Recursive Definition

e For discrete state and action, and deterministic policy,

Va(s) = D p(s/5,7(s)) |r(s,7(5),8) +AVa(s)

17



Bellman Equation (Cont.)

e For the action-state value function,

QW(S, a) = Ew(s),p(8|8,a) [ZVtTtLSo = S,a0 = a}

t=0

— EW(SQ),]D(81|80,CL0) ro + ,YEW(S),}?(SB,CL) [Z’yt_l'rtlsla &1] |SO = 5,00 = @
) t=1

— Ew(so),p(sﬂso,ao) ro + 7@%(517 a1)|50 = $,40 = CL}

Recursive Definition

e For discrete state and action, and deterministic policy,

Qr(s,a) = Zp(s’]s, a) {r(s, a,s’) +vQx (S/,T((S,))}

18



Bellman Equation (Cont.)

e For optimal deterministic policy 77,

Vs (8) = max {Zp(s’\s, a) r(s,a,s") + Vi (S/)]}

Qe (5,0) = 3 p(s']s,a) [r(5,0,5) + 7 max Q- (', 0') |
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Bellman Equation (Cont.)

e For optimal deterministic policy 7,

Vs (8) = max {Zp(s’\s, a) r(s,a,s") + Vi (S/)]}

Qr-(5,0) = > p(s'|s,a) [r(s,a,) + ymax Qr- (', ) |

® Then the optimal deterministic policy is

7 (s) = argmax Q= (s, a)

e Due to the recursive structure, the optimal value functions can

be solved by dynamical programming. This assumes that the full
information of the MDP is known!

19



Reinforcement Learning

e RL with known model

20



Value lteration

¢ |nitialize value function V/
e Fori=1,2,3... until convergence

e Update V; for each state
Vi(s) = max {Zp(s’]s, a)lr(s,a,s") + 7‘/;_1(3’)]}

e Theoretical convergence guarantee to VV*and 7~
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Value lteration

¢ |nitialize value function V/

e Fori=1,2,3... until convergence
Why iterative update!

L ists in the MDP!
e Update V; for each state SRR A

Vi(s) = max {Zp(s’]s, a) r(s,a,s") + 7%_1(3’)]}

e Theoretical convergence guarantee to VV*and 7~
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Policy Iteration

* [nitialize value function 1/, and policy 7
e Fori=I,2,3... until convergence

e Policy evaluation step: update 1/, for each state until converge
Vi(s) =r+ VI (s)

e Policy improvement step: update 7; for each s-a pair.

7T(S) S argimaxg Zs’,r’ p(3,7 T‘Sa a) [T + AYV(S/”

e Theoretical convergence guarantee to V*and 7"
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Policy Iteration

* [nitialize value function 1/, and policy 7
e Fori=I,2,3... until convergence

e Policy evaluation step: update 1/, for each state until converge

Calculated based on 7T; —1

V;; (5) = r + ’VVTfl (3/) Actually an inner loop to do
iterative update until convergence

e Policy improvement step: update 7; for each s-a pair.

T‘-(S) S argimaxg Zs’,fr’ p(3,7 T‘Sa CL) [T + ’VV(S/”

e Theoretical convergence guarantee to V*and 7"

22



Policy Iteration (Cont.)

starting
V n

Policy evaluation Estimate v,
lterative policy evaluation

Policy improvement Generate 7’ > 7
Greedy policy improvement

evaluation

v Vv

n—>greedy(V)

improvement
.
o
o
.

K
—>
T -—=V"

Slide courtesy: David Silver
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Learning with Unknown Model

When full information of the MDP is known, the value function
can be solved by planning.

But how to solve when not fully known? < S, A, P, R,~v >

In RL, usually the state transition P and reward function R are
not known.

The agent has to learn by trial and error, facing with the
exploration and exploitation problem.

24



Reinforcement Learning

e RL with unknown model

25



Agent and Environment

T, i o
XX X >
X Y \ ,
 /aR, / L \
state /B 7 R e action
— )\~ \:‘t* < VY
St H\\ 7=y = ay
N 2 » At each step t the agent:
s rf —= .
= » Receives state s;
&
» Receives scalar reward r;
reward r

» Executes action a;

» [he environment:

» Receives action as
» Emits state s;
» Emits scalar reward r;

e The target is still to learn the optimal value function.

Slide courtesy: David Silver
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Agent and Environment

ry

» At each step t the agent:

» Receives state s;
» Receives scalar reward r;
» Executes action a;

» [he environment:

» Receives action as
» Emits state s;
» Emits scalar reward r;

The agent can only interact with true environment.

Can not use model for search or planning.

The target is still to learn the optimal value function.

Slide courtesy: David Silver
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Basic ldea

e Similar to DP, aiming at estimating the optimal value function.
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Basic ldea

e Similar to DP, aiming at estimating the optimal value function.
e Value function update: update using new estimation
Qit1(s,a) = (1 = )Qi(s, a) +M
e Monte-Carlo RL — Estimate by sampled trajectories
e Temporal difference Learning — SARSA and Q-learning.
e Policy Improvement:

e Based on new value function, with € - greedy.

27



Monte-Carlo RL

Given policy 7;, we can sample trajectories:

{817 ai, Tl}? {827 az, 7“2}, {837 as, TB}“'

Then we can get empirical estimate:

Qi(Sh a1) =T+ Yrg + 727“3 + ...

Update value function:

Qi—I-l(Sv a) — (1 o O‘)Qi(‘sv CL) -+ @Qi(‘sv CL)

Follow the spirit of policy iteration, update m; — ;1

28



Monte-Carlo RL

Given policy 7;, we can sample trajectories:

{817 ai, Tl}? {827 az, T2}7 {337 as, TS}---

Then we can get empirical estimate:

Qi(Sl, ai1) =11 +yre + 727“3 + ... Can we still

update the
policy greedily?

Update value function:

Qit1(s,a) = (1 —a)Qy(s,a) + &Qz’(sa a) j No!

Follow the spirit of policy iteration, update m; — ;1

28



Exploration vs. Exploitation

“Behind one door is tenure - behind the other
is flipping burgers at McDonald's.”

m [ here are two doors in front of you.

m You open the left door and get reward 0
V(left) =0

m You open the right door and get reward +1
V(right) = +1

m You open the right door and get reward +3
V/(right) = +2

m You open the right door and get reward +2
V/(right) = +2

m Are you sure you've chosen the best door?

Slide courtesy: David Silver
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Exploration vs. Exploitation (Cont.)

e |n policy iteration, the policy improvement step is greedy:
7 (s) = argmax Q;(s, a)

e But for RL, since the environment is not fully known, greedy
update may perform arbitrarily bad — need to allow some
exploration.

. . with prob. 1 — €, execute as greedy
¢ Common choice: use €- greedy policy:
with prob. €, execute randomly

e Theoretical guarantee: If the exploration vanishes, we can
ensure convergence.

30



TD vs. MC

Temporal-difference (TD) learning has several advantages
over Monte-Carlo (MC)

m Lower variance
m Online
m Incomplete sequences

Natural idea: use TD instead of MC in our control loop
m Apply TD to Q(S,A)
m Use e-greedy policy improvement
m Update every time-step

Slide courtesy: David Silver
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SARSA

e “State-Action-Reward-State-Action” — SARSA

Run the current
best €-greedy policy
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SARSA

e ‘‘State-Action-Reward-State-Action” — SARSA
a; Run the current
------ S; — S’I,—|—1

best €-greedy policy
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SARSA

e “State-Action-Reward-State-Action” — SARSA
7 Ai+1
...... S; —> Siqy] —b eeee- Run the current

best €-greedy policy

32



SARSA

e “State-Action-Reward-State-Action” — SARSA
7 Ai+1
...... S; —> Siqy] —b eeee- Run the current

best €-greedy policy

s
¢ Once collect s-a-r-s-a sample, do value function update:

Q(Sia Gw;) — Q(Su &z‘) T 04{7“7; - VQ(SHL ai+1) - Q(Si, ai)}
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SARSA

e “State-Action-Reward-State-Action” — SARSA
7 Ai+1
...... S; —> Siqy] —b eeee- Run the current

best €-greedy policy

T

¢ Once collect s-a-r-s-a sample, do value function update:

TD error
Q(Si, ai) — Q(Su Cbz‘) T 04{7%' - WQ(SHL CL7;+1) - Q(Si, ai)}

Always use the policy on-the-run, called “on-policy”
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Q-Learning

Run the current
best €-greedy policy
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Q-Learning

Run the current
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Q-Learning

Run the current
best €-greedy policy
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Q-Learning

Run the current
best €-greedy policy

¢ Once collect s-a-r-s sample, do value function update:

Q(Sz’, ai) — Q(Sm ai) T 04[7%' + VQ(Sz'H,fT*(SiH)) — Q(Si7 ai)}
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Q-Learning

Run the current
best €-greedy policy

¢ Once collect s-a-r-s sample, do value function update:

Q(Sz’, ai) — Q(Sz’) ai) T Oé["“z' + VQ(SiﬂafT*(Sz’H)) — Q(Su ai)}

The current best policy

The policy on the run can be different from
the current best policy in the update, called “off-policy”

33



Off-Policy Learning

m Evaluate target po

m While following be

icy m(als) to com

naviour policy u(a

oute v(s) or g-(s, a)

s)

{SlaAla R27 coey ST} ~ W

m Why is this important?

Re-use experience generated from o

Learn about optimal policy while fo

Learn from observing humans or other agents

d policies 71, m, ..., T¢_1

lowing exploratory policy

Learn about multiple policies while following one policy

Slide courtesy: David Silver
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Large-Scale RL

e large decision-making problems:

020 states

e Backgammon: 1
e Go: 10'" states

¢ Robot control: continuous state space

Classic value function methods rely on tabular representation of value functions.
Obviously needing more compact representations.

35



Types of Value Function Approximation

output: value function scores

V(S,W) S,a,W sa W) - sa W)

input: state or/and actions Slide courtesy: David Silver
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Feature Vectors

m Represent state by a feature vector
(x1(5))
XS =
\xn(5)/

m For example:

m Distance of robot from landmarks
m Irends in the stock market
m Piece and pawn configurations in chess

Slide courtesy: David Silver
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Linear Value Function Approximation

m Represent value function by a linear combination of features

V(S w) =x(5) 'w=">) xi(S)w;
j=1

m Objective function is quadratic in parameters w

J(w) = Ex | (v4(S) = x(5) w)’|

m Stochastic gradient descent converges on global optimum
m Update rule is particularly simple

Vwi(S,w) = x(5)
Aw = a(v;(S) — V(S,w))x(S)

Update = step-size x prediction error x feature value
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Linear Value Function Approximation

m Represent value function by a linear combination of features

V(S w) =x(5) 'w=">) xi(S)w;

j=1

m Objective function is quadratic in parameters w

J(w) = Ex | (va(S) — x(S) w)’|

unknown true value.
need to estimate during learning!

m Stochastic gradient descent converges on global optimum
m Update rule is particularly simple

Vwi(S,w) = x(5)
Aw = a(v;(S) — V(S,w))x(S)

Update = step-size x prediction error x feature value

beyond simple linear regression



Function Approximators

There are many function approximators, e.g.
m Linear combinations of features
Neural network
Decision tree

m
m

m Nearest neighbour

m Fourier / wavelet bases
m

Slide courtesy: David Silver
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Function Approximators

There are many function approximators, e.g.

L inear combinations of features

more commonly used
Neural network

Decision tree
Nearest neighbour

Fourier / wavelet bases

Different from traditional supervised learning,
we need learning algorithms that can handle data collected by the learner online:
biased and unstable.

Slide courtesy: David Silver
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Bias and Instability
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Bias and Instability

The learner collects
data by itself.
“Only see
what it want to see”

The issue of bias and instability for data collection lies at the heart of RL.
This is also why we need exploration.

40



Approximate Targets via Bellman Equation

m Have assumed true value function v, (s) given by supervisor

m But in RL there is no supervisor, only rewards

m In practice, we substitute a target for v,(s)
m For MC, the target is the return G;

Aw = Oé(Gt — O(St, W))Vw\’}(St, W)
m For TD(0), the target is the TD target Ri11 + YV(Sta1, W)
Aw = Oé(Rt_|_]_ -+ ’Y‘/}(St—klv W) — \7(51_—, W))Vw\7(5t, W)
m For TD()), the target is the A-return G}

Aw = oG} — V(Se, W)V 0(Se, w)

Slide courtesy: David Silver
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Approximate Targets via Bellman Equation

m Have assumed true value function v, (s) given by supervisor

m But in RL there is no supervisor, only rewards

m In practice, we substitute a target for v,(s)
m For MC, the target is the return G;

Monte-Carlo estimation Aw = a(G; — V(S5:,w))V V(S5 w)
m For TD(0), the target is the TD target Ri11 + YV(Sta1, W)
Aw = a(Rir1 + 90 (Sei1,w) — (S, W)) Vi V(St, W)
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Approximate Targets via Bellman Equation

m Have assumed true value function v, (s) given by supervisor

m But in RL there is no supervisor, only rewards

m In practice, we substitute a target for v,(s)
m For MC, the target is the return G;

Monte-Carlo estimation Aw = a(G; — V(S5:,w))V V(S5 w)

m For TD(0), the target is the TD target Ri11 + YV(Sta1, W)
Aw = OZ(Rt_|_]_ -+ ’Y‘/}(St—I—l? W) — \7(51_-, W))Vw\7(5t, W)
m For TD()), the target is the A-return G}

Aw = oG} — ¥(S¢, W)V 0(S:, w)

Temporal-difference estimation . o
Slide courtesy: David Silver
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Action Value Function Approximation

m Approximate the action-value function

m Minimise mean-squared error between approximate
action-value fn (S, A, w) and true action-value fn q,(S, A)

J(w) = Er [(9:(S, A) — 4(S, A, w))?]
m Use stochastic gradient descent to find a local minimum

_%ij(w) — (g.(S, A) — §(S, A, w))Vwi(S, A, w)

Aw = a(qg:(5,A) — G(S5,A,w))Vwi(S, A, w)

Slide courtesy: David Silver
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Linear Action-Value Function Approximation

m Represent state and action by a feature vector

X1(5, A)\
xX(S,A) = .

xn(S. A) )

m Represent action-value fn by linear combination of features

§(S, A,w) = x(S,A)'w =D x;(S, A)w;

j=1

m Stochastic gradient descent update

Vwi(S, A, w)
Aw

x(S,A)
a(qr(S,A) — 4(S, A, w))x(S, A)

Slide courtesy: David Silver
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Linear Action-Value Function Approximation

m Like prediction, we must substitute a target for g.(S, A)
m For MC, the target is the return G;

Aw = (G — G(S:, Ae, W)V G(S:, Ar, w)
m For TD(0), the target is the TD target Ryy1 + YQ(Str1, Ari1)
Aw = a(Rii1 +74(Sev1, Arv1, w) — G(St, Ar, W)V G(Se, Ar, w)
m For forward-view TD(\), target is the action-value A-return
Aw = a(q; — G(St, Ae, W))Vw@(St, A, w)
m For backward-view TD(\), equivalent update is

t — Rt—|—1 + 7@(5t+17 At—|—17 W) _ a(Sta At? W)
Er = YAE;—1 + VwG(S:, A, w)
Aw = o+ E;

Slide courtesy: David Silver
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Linear Action-Value Function Approximation

m Like prediction, we must substitute a target for g.(S, A)
m For MC, the target is the return G;

Aw = oG — §(St, A, w))VwG (S, Ar, w)
m For TD(0), the target is the TD target Ryy1 + YQ(Str1, Ari1)

SARSA here. AW = o(Rip1 + 7G(Sti1, Arpr, W) — G(St, Ae, W)V G(S:, Ar, w)
Can also do -

Q-learning  m For forward-view TD(\), target is the action-value A-return

(more later) N A
AW — &(qt o q(5t7 At7 W))qu(sh At7 W)

m For backward-view TD(\), equivalent update is

t — Rt—|—1 + Va(St—l—l) At—|—17 W) _ a(Sta At? W)
Er = YAE;—1 + VwG(S:, A, w)
Aw = o+ E;

Slide courtesy: David Silver
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Reinforcement Learning

e Policy gradient & actor-critic methods

45



Direct Policy Learning

e For value function based RL, policy is not directly optimized.

® Not capable to learn in continuous state and action space.
® Not capable to learn stochastic policy.

¢ May not learn fast.
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Direct Policy Learning

e For value function based RL, policy is not directly optimized.

® Not capable to learn in continuous state and action space.
® Not capable to learn stochastic policy.

¢ May not learn fast.

e Can learn stochastic policy directly:
® Parametrize policy 7y (a|s) with parameter ¢
.
e For discrete action: softmax (s, a) o e?(5:2)

e For continuous action: Gaussian a ~ N (u(s),0?)
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Direct Policy Learning

Advantages:
m Better convergence properties
m Effective in high-dimensional or continuous action spaces
m Can learn stochastic policies

Disadvantages:

m Typically converge to a local rather than global optimum

m Evaluating a policy is typically inefficient and high variance

Slide courtesy: David Silver
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Objective Function

Goal: given policy my(s, a) with parameters 6, find best 6
But how do we measure the quality of a policy my?
In episodic environments we can use the start value

Ji1(0) = V™ (s1) = Exr, [v]

In continuing environments we can use the average value

Jav(0) =) d™(s)V™(s)

S

Or the average reward per time-step

Jar(0) = d™(s) Y ma(s,a)R:

S

where d™(s) is stationary distribution of Markov chain for 7y

Slide courtesy: David Silver 48



Objective Function

Goal: given policy my(s, a) with parameters 6, find best 6
But how do we measure the quality of a policy my?
In episodic environments we can use the start value

Ji1(0) = V™ (s1) = Exr, [v]

In continuing environments we can use the average value
v s
avV E d 0 V 9
Or the average reward per time-step

Javr (0 Zdwe s) Y my(s, a)R3

where d™(s) is stationary distribution of Markov chain for 7y

The challenge is that the distribution can only be
estimated when the agent itself samples data.

Slide courtesy: David Silver 48



Policy Gradient

m Let J(0) be any policy objective function

m Policy gradient algorithms search for a
local maximum in J(6) by ascending the
gradient of the policy, w.r.t. parameters 6

A0 = aVyJ(0)
m Where VyJ(0) is the policy gradient
5J(6) (AN
d RS ]
891 i "':',"" ”’ %%Z}Zé%g
VQJ(Q) = i 7)
\8J(0)
00,

m and « Is a step-size parameter

Slide courtesy: David Silver
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Policy Gradient Theorem

Policy Gradient Methods for
Reinforcement Learning with Function
Approximation

Richard S. Sutton, David McAllester, Satinder Singh, Yishay Mansour
AT&T Labs — Research, 180 Park Avenue, Florham Park, NJ 07932

For any differentiable policy my(s, a),

for any of the policy objective functions J = Ji, J,yr, or ﬁJaVV,
the policy gradient is

Vod(0) =E,, [Vologms(s,a) Q™ (s, a)]
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Policy Gradient Theorem

Policy Gradient Methods for
Reinforcement Learning with Function
Approximation

Richard S. Sutton, David McAllester, Satinder Singh, Yishay Mansour
AT&T Labs — Research, 180 Park Avenue, Florham Park, NJ 07932

For any differentiable policy my(s, a),

for any of the policy objective functions J = Ji, J,yr, or ﬁJaVV,
the policy gradient is

Vod(0) =E,, [Vologms(s,a)|Q™ (s, a)]

Need to estimate value function

Monte-Carlo or temporal difference
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Actor-Critic

m Value Based
m Learnt Value Function
m Implicit policy
(e.g. e-greedy)
m Policy Based
m No Value Function  Value-Based
m Learnt Policy
m Actor-Critic

m Learnt Value Function
m Learnt Policy

Value Function Policy

Actor
Critic

Policy-Based

Slide courtesy: David Silver s



Reinforcement Learning

¢ Deep reinforcement learning

52



Practical Issues for RL

e Reward design:an art
e State feature design:also an art

¢ The environment is too complicated to model.

Can we apply deep learning to RL?
Use deep network to represent value function / policy / model
Optimise value function / policy /model end-to-end

Using stochastic gradient descent

Slide courtesy: David Silver 53
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>

Deep Q-Network

Represent value function by deep Q-network with weights w

Q(s,a, w) =~ Q" (s, a)

Define objective function by mean-squared error in Q-values

- 2—
( \
Lw)=E|[|r+vymaxQ(s',a,w) - Q(s,a,w)
—_——

\ target /

Leading to the following Q-learning gradient

oL(w) _
ow

E [(r + v max Q(s', &, w) — Q(s, a, w)) 2054, W)]

ow

. L. AL
Optimise objective end-to-end by SGD, using —(-—23‘4"/"

Recall function approximation in P. 42.

Slide courtesy: David Silver
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Stability Issues for Deep RL

Naive Q-learning oscillates or diverges with neural nets

1. Data is sequential
» Successive samples are correlated, non-iid
2. Policy changes rapidly with slight changes to Q-values

» Policy may oscillate
» Distribution of data can swing from one extreme to another

3. Scale of rewards and Q-values is unknown

» Naive Q-learning gradients can be large
unstable when backpropagated

The bias and instability issue we have discussed.
More severe for NNs.

Slide courtesy: David Silver 33



DQON Techs

DQN provides a stable solution to deep value-based RL

1. Use experience replay

» Break correlations in data, bring us back to iid setting
» Learn from all past policies

2. Freeze target Q-network

» Avoid oscillations
» Break correlations between Q-network and target

3. Clip rewards or normalize network adaptively to sensible range
» Robust gradients
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Experience Replay

To remove correlations, build data-set from agent's own experience

Take action a; according to e-greedy policy
Store transition (s, a¢, rt+1, St+1) in replay memory D

Sample random mini-batch of transitions (s, a, r,s’) from D

v v v v

Optimise MSE between Q-network and Q-learning targets, e.g.

2
L(w)=E;,,ep (r + max Q(s',a',w) — Q(s, a, w))

off-policy!



Fixed Network

To avoid oscillations, fix parameters used in Q-learning target

» Compute Q-learning targets w.r.t. old, fixed parameters w™
r+v max Q(s',a’,w™)
a

» Optimise MSE between Q-network and Q-learning targets

2
L(w) =Ega,s~p (r + max Q(s',a,w™) — Q(s, a, W))

» Periodically update fixed parameters w™ < w
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v v v V¥V

Clipped Rewards

DQN clips the rewards to [—1, +1]
This prevents Q-values from becoming too large
Ensures gradients are well-conditioned

Can't tell difference between small and large rewards

59



DON for Atari Games
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DON for Atari Games

32 4xA4 filters Fully-connected linear
output layer

256 hidden units
16 8x8 filters

4x84x84

%

F—

control

Stack of 4 previous i Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units

of rectified linear units of rectified linear units

sampling
optimize

Replay Buffer

Published: 25 February 2015

Human-level control through deep reinforcement
learning

Volodymyr Mnih, Koray Kavukcuoglu &, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,

Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,

Amir Sadik, loannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg & Demis

Hassabis

Nature 518, 529-533 (2015) \ Cite this article

438k Accesses | 10525 Citations | 1546 Altmetric | Metrics

First break through of deep RL.
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DON for Atari Games

» End-to-end learning of values Q(s, a) from pixels s
» Input state s is stack of raw pixels from last 4 frames
» Output is Q(s, a) for 18 joystick/button positions

» Reward is change in score for that step

32 4x4 filters 256 hidden units Fully-connected linear
output layer

| 6 8x8 filters

4x84x84 F_‘
l E L—L_LI
1
1
Stack of 4 previous Fully-connected layer

frames Convolutional layer Convolutional layer of rectified linear units
of rectified linear units of rectified linear units

Network architecture and hyperparameters fixed across all games

[Mnih et al.]
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Deep RL Architecture

Gorila (GOogle Relnforcement Learning Architecture)

Sync every
global N steps

Parameter Server Learner
DQN Loss
Sitlels Gradient .
wrt loss " max_Q(s;a’; 0)

| ? Gradient Target Q
Network

Sync Sync
Bundled

i
Actor 1
argmax, Q(s,a; 6)
Environment
S

» Parallel acting: generate new interactions

» Distributed replay memory: save interactions
» Parallel learning: compute gradients from replayed interactions

» Distributed neural network: update network from gradients

Slide courtesy: David Silver

63



Reinforcement Learning

® |[ntegrating learning and planning
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Internal and External Model

Models are crucial in decision making problem:s.
Whenever we have the external model or can obtain the internal model, we can
combine the power of learning and planning (e.g. search, dynamic programming).

environment
(external model)

action
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Integrating Learning and Planning

m Model-Free RL

m No model

m Learn value function (and/or policy) from real experience
m Model-Based RL (using Sample-Based Planning)

m Learn a model from real experience

m Plan value function (and/or policy) from simulated experience
m Dyna

m Learn a model from real experience

m Learn and plan value function (and/or policy) from real and
simulated experience

Machine Learning Proceedings 1990

Proceedings of the Seventh International Conference, Austin, Texas, June 21-23, 1990

1990, Pages 216-224

Integrated Architectures for Learning, Planning,

and Reacting Based on Approximating Dynamic
Programming

Richard S. Sutton X3
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Planning by DP

Problem Bellman Equation Algorithm

Iterative
Policy Evaluation

Prediction | Bellman Expectation Equation

Bellman Expectation Equation

Control . Policy Iteration
+ Greedy Policy Improvement Y

Control Bellman Optimality Equation Value lteration

m Algorithms are based on state-value function v, (s) or v,(s)

m Complexity O(mn?) per iteration, for m actions and n states

m Could also apply to action-value function g,(s, a) or g«(s, a)

m Complexity O(m?n?) per iteration

Slide courtesy: David Silver 7



Monte-Carlo Simulation

best action

11 11 11
11 11 11
11 1 1 1 1 1 1 1 repeated
. 1 P random run
11 11 11
11 11 11

VVY VVY \AA 4

U, =12 Us = 10 Us =8

Converge to true utility when the #run is sufficient!
But in real game playing, the time and space for simulation is limited.

We need a smart strategy to decide the order of simulation.
68



Monte-Carlo Tree Search (MCTYS)

e Nodes of two kinds: @ visited node with unexpanded child,
and @ unvisited node.
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e Nodes of two kinds: @ visited node with unexpanded child,
and @ unvisited node.

¢ During MCTS, we use two strategies: tree and default
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Monte-Carlo Tree Search (MCTYS)

e Nodes of two kinds: @ visited node with unexpanded child,
and @ unvisited node.

¢ During MCTS, we use two strategies: tree and default

e Algorithm: repeat until time or space limit:
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Monte-Carlo Tree Search (MCTYS)

e Nodes of two kinds: @ visited node with unexpanded child,
and @ unvisited node.

¢ During MCTS, we use two strategies: tree and default

e Algorithm: repeat until time or space limit:

e Selection: choose one node among @ using tree strategy

/¥
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Monte-Carlo Tree Search (MCTYS)

e Nodes of two kinds: @ visited node with unexpanded child,
and @ unvisited node.

¢ During MCTS, we use two strategies: tree and default

e Algorithm: repeat until time or space limit:

e Selection: choose one node among @ using tree strategy

e Expansion: expand an unvisited child and put into @
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/¥
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Monte-Carlo Tree Search (MCTYS)

e Nodes of two kinds: @ visited node with unexpanded child,
and @ unvisited node.

¢ During MCTS, we use two strategies: tree and default

e Algorithm: repeat until time or space limit:

e Selection: choose one node among @ using tree strategy

e Expansion: expand an unvisited child and put into @

e Simulation: simulate down using default strategy

00
/¥
QQQ

v
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Monte-Carlo Tree Search (MCTYS)

e Nodes of two kinds: @ visited node with unexpanded child,
and @ unvisited node.

¢ During MCTS, we use two strategies: tree and default

e Algorithm: repeat until time or space limit:

e Selection: choose one node among @ using tree strategy

e Expansion: expand an unvisited child and put into @

e Simulation: simulate down using default strategy ‘

00
/¥
QQQ

v

¢ Update: update MC estimation through path



Monte-Carlo Tree Search (MCTYS)

Nodes of two kinds: @ visited node with unexpanded child,
and @ unvisited node.

During MCTS, we use two strategies: tree and default

Algorithm: repeat until time or space limit:

e Selection: choose one node among @ using tree strategy

e Expansion: expand an unvisited child and put into @

e Simulation: simulate down using default strategy ‘

Output the best action to play /¥

00
v

¢ Update: update MC estimation through path
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Monte-Carlo Tree Search (MCTYS)

e Nodes of two kinds: @ visited node with unexpanded child,
and @ unvisited node.

¢ During MCTS, we use two strategies: tree and default

e Algorithm: repeat until time or space limit:

e Selection: choose one node among @ using tree strategy

e Expansion: expand an unvisited child and put into @

e Simulation: simulate down using default strategy ‘

e Output the best action to play /¥

The default strategy is usually random play
The tree strategy is essential: v
Deciding the order of search

¢ Update: update MC estimation through path
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AlphaGo:
Integration of Learning & Planning




Why is Go hard for computers to play?

Game tree complexity = b®
Brute force search intractable:

1. Search space is huge

2. “Impossible” for computers
to evaluate who is winning




Convolutional neural network

5 > a [
—® {

@ &
o I 9e Q 5 oo |
N i PN Y b fig sallll [ o
\J‘C‘E’&‘ A /S ‘ \*‘\x}s--

|

| |
il ]

@ ' Google DeepMind

AlphaGo introduces three conv. nets for learning.
Use images of board as state inputs.
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6 Google DeepMind

Value network

Evaluation
<&

Position

The value function of RL.
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’ Google DeepMind

Policy network

Move probabilities

|. s 2 p,(als)
> §

Position

Policy network of RL.
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Neural network training pipeline

Human expert Supervised Learning Reinforcement Learning Self-play data Value network
positions policy network policy network
W
First stage: Second stage: Second stage:
Supervised classification Policy gradient RL Supervised regression
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Learning: First Stage

Supervised learning of policy networks

Policy network: 12 layer convolutional neural network
Training data: 30M positions from human expert games (KGS 5+ dan)

Training algorithm: maximise likelihood by stochastic gradient descent

dlog ps(als)
Oo

Ao

Training time: 4 weeks on 50 GPUs using Google Cloud

Results: 57% accuracy on held out test data (state-of-the art was 44%)

Google DeepMind
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Learning: Second Stage

Reinforcement learning of policy networks

Policy network: 12 layer convolutional neural network
Training data: games of self-play between policy network

Training algorithm: maximise wins z by policy gradient reinforcement learning

8logpa(a|8) .
oo

Ao

Training time: 1 week on 50 GPUs using Google Cloud
Results: 80% vs supervised learning. Raw network ~3 amateur dan.

Google DeepMind
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Learning: Third Stage

Reinforcement learning of value networks

Value network: 12 layer convolutional neural network

Training data: 30 million games of self-play

Training algorithm: minimise MSE by stochastic gradient descent

Al ngés) (z —va(s))

Training time: 1 week on 50 GPUs using Google Cloud

Results: First strong position evaluation function - previously thought impossible

@ Google DeepMind
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Real Play: MCTS

Exhaustive search
f+
g
/\ /\

T — — — T — — —

2 NA N A U A N2 U2 U A YA YA A A WA N N S YA
ANERANCAAARE AR ARAREAAALARR ERARAN
AAMAMAAAMMAAMA /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ﬂ/\/\ﬁ%l\m/\ A /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\AA@@@@@@@@AAAAAAAAAA/\/\/\/\/\/\/\/\/\/\/\/
AMANAAAMAAAAANAAMANAAMANAAANMANAAAAAAAAANAAANAAANAAANAAANANAAANAANAN

Google DeepMind

Two key steps:
node expansion and repeated random simulation
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Real Play: MCTS

Reducing depth with value network
t+
W

P e - U U e U e O N

G OBME OB OBE OMH A AR B

@ Google DeepMind

With value network, we can expand fewer depth

since the value of nodes can also be obtained from the value network.
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Real Play: MCTS
Reducing breadth with policy network
f#
e &
\

/
>N

'} Google DeepMind

With policy network, we can simulate with fewer times
since the simulation can be guided by policy network over random play.
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Evaluating AlphaGo against computers
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Computer Programs Calibration Human Players

DeepMind challenge match

AlphaGo (Mar 2016)

Beats

AlphaGo (Oct 2015)

Beats

Crazy Stone and Zen

4-1

Nature match

5-0

KGS

Lee Sedol (9p)
Top player of
past decade

Fan Hui (2p)
3-times reigning
Euro Champion

Amateur
humans
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Reinforcement Learning

e RL from human preference
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Aligning Language Models
to Follow Instructions

prompt  Explain the moon landing to a 6 year old in a few sentences.

Completion GPT-3

Explain the theory of gravity to a 6 year old.
Explain the theory of relativity to a 6 year old in a few sentences.
Explain the big bang theory to a 6 year old.

Explain evolution to a 6 year old.

InstructGPT

People went to the moon, and they took pictures of what they saw, and sent
them back to the earth so we could all see them.

https://openai.com/research/instruction-following#samplel|
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Step 1

Fine-Tune GPT by RL

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

(e}

Z

Some people went
to the moon...

https://openai.com/research/instruction-following#sample |
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Step 1

Fine-Tune GPT by RL

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

(e}

Z

Some people went
to the moon...

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

https://openai.com/research/instruction-following#sample |

Explain the moon
landing to a 6 year old

A o

Explain gravity... Explain war...

o o

Moon is natural People went to
satellite of... the moon...

0-0-0-0
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Step 1

Fine-Tune GPT by RL

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

l*

(e}

Z

Some people went
to the moon...

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

A o

Explain gravity... Explain war...

o o

Moon is natural People went to
satellite of... the moon...

0-0-0-0

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

https://openai.com/research/instruction-following#sample |
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Learning Reward Function from
Human Preference

e Reward function for evaluating behavior segments: (0, a)
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O

e Reward function for evaluating behavior segments: (0, a)

¢ Given two segments, human expert labels preference: o1 > o9

e Turn reward function into classifier to estimate the preference:

exp > T (ot,at)

Plol » 2] = .
7 0 S ST oh al) T exp S 7 (07, 07)

The Bradley—Terry model [1952]
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Learning Reward Function from
Human Preference

O

e Reward function for evaluating behavior segments: (0, a)

¢ Given two segments, human expert labels preference: o1 > o9

e Turn reward function into classifier to estimate the preference:

exp > T (ot,at)

Plol » 2] = .
7 0 S ST oh al) T exp S 7 (07, 07)

The Bradley—Terry model [1952]

e [earn the reward function (classifier) with cross-entropy loss.

Why not let human directly label single segment!?
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Reinforcement Learning

e Take-home messages
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Take-Home Messages

e Reinforcement learning solves decision-making problems by
interaction with the environment.

e Markov decision process models the decision problem, when
full information is known, dynamical programming can be used.

e Value function based RL utilizes MC or TD estimate of the value
function.
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Take-Home Messages

To solve large-scale RL problems, functional approximation of
value functions or policies is essential.

Policy gradient & actor-critic: direct learning of policies. Usually
more efficient for deep RL.

Large-scale RL systems: Integrating learning and planning & RL
from human preference.

Next-steps of RL?
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Why hasn’t DRL solved many real-world problems?

¢ Deep RL usually does not use (learn) a world model.

Stack of 4 previous

A8 sampling
optimize

kR | T

A self-generated data
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Why hasn’t DRL solved many real-world problems?

¢ Deep RL usually does not use (learn) a world model.

y sampling
optimize

Replay Buffer -

Without a world model, learning from self-generated data
requires many trial-and-errors in the real world.
Large cost. Bad generalization to new task.

# self-generated data
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Model-Based RL

Scenarios of decision making:
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Model-Based RL

Scenarios of decision making:

¢ Planning: directly solve the optimal policy when the world
model is known (dynamic programming, Monte-Carlo tree

search...)

¢ Model-free RL: learn by trial-and-error (Q-learning, policy
gradient, actor-critic...)

® Model-based RL: learn the world model during learning, do RL

or planning using the model.
Building the internal model is essential.

policy learned with low cost
& robust to world change

\:
/
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Not Covered...

Search, planning and game theory
Bandit learning

Imitation learning and Inverse RL

RL Theory

93



Further Reading

David Silver’s RL Course:
https://www.davidsilver.uk/teaching/

Deep RL course @ Berkeley:
https://rail.eecs.berkeley.edu/deeprilcourse/

Sutton and Barto book:
http://incompleteideas.net/book/the-book-2nd.html

OpenAl Gym platform:
https://github.com/Farama-Foundation/Gymnasium
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Thanks for your attention!
Discussions?

Acknowledgement: Many materials in this lecture are taken from
https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/wp-content/uploads/2020/03/AlphaGo-tutorial-slides_compressed.pdf
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