Introduction to Machine Learning

T #748
AL K3

Slides link:
https://yaoxiangding.github.io/introML-2023/lec8-frontiers.pdf

Summer 2023
Lecture 8


https://yaoxiangding.github.io/introML-2023/lec8-frontiers.pdf

To Achieve Higher-Level Al

e Background

® | earning from small data
® [earning to model the world
¢ |oint learning of perception and reasoning

e Take-home messages

Slides link:



https://yaoxiangding.github.io/introML-2023/lec8-frontiers.pdf

To Achieve Higher-Level Al

e Background

Slides link:



https://yaoxiangding.github.io/introML-2023/lec8-frontiers.pdf

Artificial Intelligence

“Definitions demand reduction and reduction demands going to a
lower rung.”

— Judea Pearl,“The book of why”.




Turing Test

“The new form of game can be described in terms of a game which

) »

we call the ‘imitation game’”.

“Instead of trying to produce a programme to simulate the adult
mind, why not rather try to produce one which simulates the child’s?

— Alan Turing,“Computing Machinery and Intelligence”, 1950.
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“Instead of trying to produce a programme to simulate the adult
mind, why not rather try to produce one which simulates the child’s?

— Alan Turing,“Computing Machinery and Intelligence”, 1950.

What is still missing
in the current Al systems!?




Distribution
* Learning theory only deals with generalization
within the same distribution

* Models learn but do not generalize well (or have
high sample complexity when adapting) to
modified distributions, non-stationarities, etc.

 Humans do a lot better!!!

Yoshua Bengio, “From Conscious Processing to System 2 Deep Learning” 6



SYSTEM 1 VS. SYSTEM 2 COGNITION

2 systems (and categories of cognitive tasks): Manipulates high-level /
semantic concepts, which can

be recombined

combinatorially = ]
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Model of the Environment

To make decisions in the environment, the agent usually needs a model
of the environment to know how the things go on.
Where does this model come from?
Given by the problem (external) or built by the agent! (internal)



Internal vs. External Model

A decision-making agent can make use of external model when available,
or build its own internal model when unavailable.

environment
(external model)

action



World Model, External Policy & Internal Policy

World model

Imagined
experiment
Real world

Exploratory/
reasoning : Imagined
agent ¥ outcome

Learning
compositiona
knowledge

Learns to imagine useful experiments

Experimental results / data

Updated world model

Model-based RL

Yoshua Bengio,“From Conscious Processing to System 2 Deep Learning” 10
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world model

predicts possible future world
states caused by imagined
actions proposed by the actor

configurator short-term memory

keeps track of the current
and predicted world states
and associated intrinsic cost

intrinsic cost critic

trainable,
predicts future
intrinsic cost

1S0D

not trainable,
hard-wired

perception

estimates the current state
of the world

Yann LeCun,“A Path Towards Autonomous Machine Intelligence” 11
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To Achieve Higher-Level Al

* Learning from small data: fast learning ability from few sample.

* Learning to model the world: the foundation of OOD
generalization ability is the ability to “imagine” new things.

* Joint learning of perception and reasoning: learning both low-
level and high-level knowledge from data: more powerful
internal model.

What is still missing
in the current Al systems!?

12



To Achieve Higher-Level Al

® | earning from small data

Slides link:
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Meta-Learning

e Background

e [earning Algorithms
e Methodologies
e Optimization-Based Approaches
¢ Non-Parametric Approaches

e Black-Box Approaches

Slides link:
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Meta-Learning

e Background

Slides link:

https://yaoxiangding.github.io/introML-2023/lec8-frontiers.pdf
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Background

Machine learning success usually rely on massive data

Large, diverse data ——>  Broad generalization
(+ large models)

ALPHAGDO

A DOCUMENTARY « SPRING 2017

16



Background

Machine learning success usually rely on massive data

Large, diverse data ——>  Broad generalization
(+ large models)

ALPHAGDO

A DOCUMENTARY « SPRING 2017

What if you don’t have a large dataset?

medical imaging robotics personalized education,
translation for rare languages recommendations

16



Learning from Small Data

We mean a learning task to be a given P(:z:, y)

Suppose we want to solve a learning task:
— All classes are rare classes on the tail.
— Training data for each class is small.

Py |

big data

17
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Learning from Small Data

We mean a learning task to be a given P(x, y)

| .
l
Suppose we want to solve a learning task: big data
— All classes are rare classes on the tail.

P |\
— Training data for each class is small.

e Can we expect to learn a good classifier from scratch?
Perhaps not. Training data is not sufficient.

e Can we expect to utilize a model from a previous task!?
May not be good when the current tail classes never appeared before.

How can we learn good classifiers from small training data?
We have to reduce the dependence on data!

17



The Power of Inductive Bias

® To reduce the dependence on data, a correct prior is necessary.

P(¢|D) o< P(¢)P(D|¢)

What is a good learning algorithm?
Inductive bias plus data-modeling mechanism

18



The Power of Inductive Bias

® To reduce the dependence on data, a correct prior is necessary.

P(¢|D) o< P(¢)P(D|¢)

What is a good learning algorithm?
Inductive bias plus data-modeling mechanism

Where to obtain the good inductive bias (prior)?

Modeling image formation

Geometry Fewer human priors,
more data-driven priors
SIFT features, HOG features + SVM |

: : Greater success.
Fine-tuning from ImageNet features *

Domain adaptation from other painters

P77



Learning to Learn by Meta-Learning

Meta-learning is learning-to-learn:
Learn a inductive bias from previous learning experiences.

19
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Learning to Learn by Meta-Learning

Meta-learning is learning-to-learn:
Learn a inductive bias from previous learning experiences.

e The objective is to solve new learning tasks with the learned
inductive bias efficiently.

e For out tail classification problems, we expect to learn a good

prior by solving many learning tasks during meta-training, in order
to solve a new learning task during meta-testing.

How to achieve this?
Learn a good model initialization?
Learn a good feature representation!?

19



A Normal Learning Task

o Training data: D = {(x1,51)...-, (0. 00)} [

/

input (e.g., image) label

[ y z
| J

e [earning objective:

é@o arg max log p(D|g)

If data is sufficient, we can totally ignore the prior and fully
learn from data.

20



A Meta-Learning Task

Dievatrain = (D1, P} 01| Y

¢ Meta-train data(sets):

Di = {(@i v (@how)} Do | R e et R
[ ]
[

21



A Meta-Learning Task

Dmeta—train — {Dla S 7Dn}

¢ Meta-train data(sets):

Dz:{(leayi)va(aj?imylzc)} Ds v .
o

e The meta-learning algorithm learns the prior: p(¢o|Dmeta-train)
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A Meta-Learning Task

2L \« A‘A |
Dievatrain = (D1, Dok 71| N

¢ Meta-train data(sets):

Di = {(@h,vh)s - (ahovi)} D2 | R e i W
:
:

e The meta-learning algorithm learns the prior: p(¢o|Dmeta-train)

e The final target is to solve a new learning task:

D= {($17y1)7 SRR (xkayk)} . - VR

input (e.g., image) label

arg max 10g p(¢| D, Dmeta-train)
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A Meta-Learning Task

Daetactrain = (D1 Doy 71| N

¢ Meta-train data(sets):

D; = {(xiayi)aa(azzvyla)} Dy T‘.";ﬂ
. .

e The meta-learning algorithm learns the prior: p(¢o|Dmeta-train)

e The final target is to solve a new learning task:

D = {(ajlyylvx\a(xkayk)} é S ]
input (e.g.,{a'ge) label —

arg max 10g p(¢| D, Dmeta-train)

= arg mgx log{E4, [p(0|D, ¢0)p(¢0|Dmeta-train)] }
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A Meta-Learning Task

¢ Meta-train data(sets):

Dy = {(z%,y%),..., (zt, )} Do =
o °
»

e The meta-learning algorithm learns the prior: p(¢o|Dmeta-train)
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A Meta-Learning Task

Dmeta—train — {Dla S 7Dn}

¢ Meta-train data(sets):

Dz:{(leayi)va(aj?imylzc)} Ds ‘ .
o

e The meta-learning algorithm learns the prior: p(¢o|Dmeta-train)

e The final target is to solve a new learning task:

p:{(zl,yl),\,(m,yk)} & ¥
input (e.g.,{a'ge) label .

arg max 10g p(¢| D, Dmeta-train)

— arg mq?x log{E% [p(€b|pa ¢O)p(§b0|pmeta—train)] ~ arg m(?x log p(¢|D, ¢o)

Augment training data with meta-train data through a learned prior
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A Meta-Learning Task

Daetactrain = (D1 Doy 71| N

¢ Meta-train data(sets):

D; = {(xiayi)aa(azzvyla)} Dy T‘.";ﬂ
. .

e The meta-learning algorithm learns the prior: p(¢o|Dmeta-train)

e The final target is to solve a new learning task:

D: {(ajlyyl‘)y\y(xkyyk)} é e i | % "
input (e.g.,{a'ge) label — B |

arg max 10g p(¢| D, Dmeta-train)

— arg mq?x log{E¢0 [p(€b|pa ¢O)p(§b0|pmeta—train)] ~ arg m(?x log p(¢|D, ¢o)

. Do )
Why prior from meta-train data can help? ned prior

Augment ,
S ‘ Are there any further assumptions!? | 21




Mathematical Formulation

® There is a task distribution 7, such that any data distribution that
defines a learning task is a sample from it: P(z,y) ~ T .
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Mathematical Formulation

There is a task distribution 7T, such that any data distribution that

defines a learning task is a

sample from it: P(xz,y) ~ T .

Any dataset is generated by sample P ~ 7, and then sample D ~ P

What is a task distribution? This is maybe the trickiest thing in meta-learning.

After all, it defines the relationship among learning tasks.

Given any dataset D and prior ¢g, a learning algorithm A(D, ¢g)

exists to output ¢@.

The meta-learning objective is to learn prior ¢g to minimize the

transfer risk:

arg min EPNT D~ P
Po ’

{E(a:,y)NP L(A(D, ¢o), (z,y))] }

22



The Meta-Learning Procedure

e The formulation of transfer risk exactly shows how to train ¢

argminEpr o {Er ) [L(AD, 60), (v,1))]
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The Meta-Learning Procedure

e The formulation of transfer risk exactly shows how to train ¢g

argminEpr o {Er ) [L(AD, 60), (v,1))]

e Meta-train is a bi-level optimization problem:
e Sample a task P to obtain inner train and test data D" D
e Do inner optimization A(D'", ¢q) to obtain ¢
e Do inner test for ¢ on DS to obtain L(A(D'", ¢g), D**)
® Do outer optimization on L(A(D'", ¢y), D"*) to update ¢

Inner optimization A(D'", ¢¢) is usually assumed to have very low cost.
This shows that we can adapt to new task very fast using very few data.



Meta vs. Transfer and Multi-Task Learning

e Meta-learning includes inner update — inner test — outer update

g minEpr o { By [L(AD, 60), (¢,1))]

¢ |t encodes the procedure of learning-to-learn:

tries to learn — test the performance — improve learning skill
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Meta vs. Transfer and Multi-Task Learning

e Meta-learning includes inner update — inner test — outer update

arg qui)n Ep~7.Dop {E(az,y)rvp [L (A(D, o), (. y))} }

¢ |t encodes the procedure of learning-to-learn:

tries to learn — test the performance — improve learning skill

¢ Different from multi-task learning (learn model to solve multiple
tasks simultaneously) and transfer learning (a more general notion):

e Meta-learning solves future tasks instead of existing ones.

e Meta-learning assumes that no single model can solve all tasks.
Thus it learns how-to-learn instead of training a single model.

e Meta-learning knows how future tasks is to be learned.

24



Few-Shot Learning Protocol

® We say K-way N-shot learning to mean that:
e All learning tasks are K-class classification problems.

e For a single task, each class is given N training instances.

25
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Few-Shot Learning Protocol

e We say K-way N-shot learning to mean that:
e All learning tasks are K-class classification problems.

e For a single task, each class is given N training instances.

How to evaluate a meta-learning algorithm .
argmin Ep. N{Ex p|L(A(D, ¢o), (x, }
5-way, 1-shot image classification (Minilmagenet) 5 5o LT PP () p|L(A(D, ¢0), (z,))]

Sample task

T1 |
meta-training ‘ —— Inner update

=P I -
e B s e o 2ol N

meta-training Outer update

Given 1 example of 5 classes: Classify new examples

Held-out class
meta-testing
inner update & test &

25



Meta-Learning

e [earning Algorithms

e Methodologies

Slides link:

https://yaoxiangding.github.io/introML-2023/lec8-frontiers.pdf
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How to Write a Meta-Learning Paper?

e First, you select a title: Learning to (do the inner task)

® e.g.learning to learn: argrginEpr,pwp{E@,y)Np|L§A(D,cbo),(fc,y)ﬂ}
0
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How to Write a Meta-Learning Paper?

Key idea:
“our training procedure is based on a simple machine learning principle: test and train conditions must match”
Vinyals et al., Matching Networks for One-Shot Learning

You simulate the testing situation during testing, through inner update.

e Then,you input A, B, C, D to the following sentence:

Given (A), use (B) and do (C), to achieve (D)

¢ A:The training input to the inner task.
e B:The prior you want to learn.
e C:The inner optimization algorithm you want to use.

e D:The inner test objective you want to achieve.

e Finally, you write down a bi-level optimization problem to learn B:

arg I%ln EPNT,DNP {E(w,y)wp [L (A(Da qu)? (ZU, y)): } 27




Prior in Few-Shot Learning

¢ What to learn as the prior? argrginEpwfr,pwp{E@,y)Np [L(A(D, ¢0), (2,1))] }

This is related to the choice of inner update algorithm
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Prior in Few-Shot Learning

e What to learn as the prior? argrginEpwfr,pwp{E@,y)Np [L(A(D, ¢o), (x,y))}}
This is related to the choice of inner update algorithm

e A can be several gradient updates of the model using D.Then
can be an initialization of the model. — Optimization View

¢ A can be a nearest neighbor classifier using D .Then ¢, can be a
good feature mapping. — Nonparametric View

e A can be a direct mapping from D to task classifier weights.
Then ¢y can be a network weight generator. — Black-Box View

28



Meta-Learning

e [earning Algorithms

e Optimization-Based Approaches

Slides link:

https://yaoxiangding.github.io/introML-2023/lec8-frontiers.pdf
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Optimization-Based Meta-Learning

— meta-learning

9 ---- learning/adaptation
parameter vector
H P VL
being meta-learned
VL,
¢>|< optimal parameter VL, //‘ng
1 vector for task i Y

Learn a good model initialization, such that for a new task, the
target classifier can be learned within a few gradient steps.

30



Model Agnostic Meta-Learning

Finn et. al. MAML

— meta-learning
---- |learning/adaptation

argmin Ep7 p~p {E(x,y>rvp [L (A(Da Po), (T, y))} }

0
®0 VLs
+ %EZ ”
VEl """""" ¢3
min Z L0 —aVeL(0,D), D)

¢ task 17 _ gb’{-’ 'Qb;

Inner Task:
Given few-shot training data, use the model initialization, do a few gradient
update to achieve small error on testing data.
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Model Agnostic Meta-Learning

Finn et. al. MAML

— Mmeta-learning

---- learning/adaptation
arg qusin EPNT,DNP{E(x,y)NP [L (A(Da ¢o), ( ?J))} }
0

0
; VL;
VL,
v /?gg ,,,,, 0

. tr ts AN
Hleln tzk: | E(e — OéVQ,C(@, D’L ), D’L ) Cb){‘/ \°§b§

1. Sample task 7;  (or mini batch of tasks)
2. Sample disjoint datasets D", D:**" from D;
3. Optimize ¢; < 0 — aVeL(0, D)

4. Update 0 using VoL (¢;, D)
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Model Agnostic Meta-Learning

Finn et. al. MAML

— Mmeta-learning
---- |earning/adaptation

arg qustn EPNT,DNP{E(x,y)NP [L (A(D7 Po), (T y))] }

v
] VL:;;
VL, .
+ % ,,,, P3
. B tr ts ,/'/ \\\
min Z.E(H aVoL(0,D;"), D;”) o g
task 2 _

1. Sample task 7;  (or mini batch of tasks) V' Free to choose model
and loss. Easy to apply
on different tasks (e.g.

inf t learni
3. Optimize ¢; — 0 — aVyL(0, D) reinforcement learning)
4. Update 0 using VyL(¢;, D;*")

2. Sample disjoint datasets D", D:**" from D;

- Hard to tune. Not work
well on large networks.
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Meta-Learning

e [earning Algorithms

¢ Non-Parametric Approaches

Slides link:

https://yaoxiangding.github.io/introML-2023/lec8-frontiers.pdf
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Non-Parametric Meta-Learning

training data Dfr test datapoint xts

Compare test image with training images

In what space do you compare? With what distance metric?

Learn a good feature representation, such that for a new task, the
classifier is the nearest neighbor classifier constructed from the
few-shot training data.
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Prototypical Network

Snell et. al. Prototypical Network.

>, folx

(w y)EDL"

il exp(—d(fe(z),ck))
po(y = klz) = > exp(—d(fo(z),cr))

(a) Few-shot
d: Euclidean, or cosine distance
for £in{1,..., N¢c} do
inner testing data f"rwdo

J— J+ NclNQ [d(f¢(X),Ck)) + logzk;exp(—d(fqb(X),Ck))

end for

Inner Task:
Given few-shot training data, use the feature mapping to construct the

prototypes (class center),do KNN to achieve small error on testing data.
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Non-Parametric Meta-Learning

> folw)

(w y)EDY*

o exp(—d(fe(z),ck))
po(y = klz) = 2k exp(—d(fo(z), crr))

(a) Few-shot
d: Euclidean, or cosine distance

v Easy to tune, capable to use large networks.

= Design for few-shot learning tasks only.
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Meta-Learning

e [earning Algorithms

e Black-Box Approaches

Slides link:

https://yaoxiangding.github.io/introML-2023/lec8-frontiers.pdf
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Black-Box Meta-Learning

fo Y

T I T I
(5171ay1) (i’lf‘zay'z) (:1:3,;1/3) s
W——J
Dtr D‘dest

1

Learn a network weight generator, such that for a new task, the
classifier is directly constructed by the generator.
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Black-Box Meta-Learning

Santoro et. al. MANN, Munkhdalai & Yu, Meta-Network

ts

fo
! 1. Sample task T; (or mini batch of tasks)
: ) I B T — ¢ gfb “' 2. Sample disjoint datasets D", Di*** from D,
(z1,91) (22,92) (23,93) z \ Compute ¢; — fo(D;")
— P 4. Update 0 using VyL(¢p;, DI*")
D‘gr D{:est

1 (]

Inner Task:
Given few-shot training data, use the weight generator, do classifier
generation to achieve small error on testing data.
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Black-Box Meta-Learning

Santoro et. al. MANN, Munkhdalai & Yu, Meta-Network

ts

fo
! 1. Sample task T; (or mini batch of tasks)
: s I B T — ¢ ki 2. Sample disjoint datasets D", Di*** from D,
(#1,91) (22, 32) (23,35) o'\ 3 Compute ¢ < fo(D7)
— P 4. Update 0 using VyL(¢p;, DI*")
D,‘Lgr D{:est

1

Inner Task:
Given few-shot training data, use the weight generator; do classifier
generation to achieve small error on testing data.

v Strong representation power. May be applied on complex tasks.

== J€€ms to be an unnecessary solution for few-shot tasks.
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Performance Comparisons

A CLOSER LOOK AT FEW-SHOT CLASSIFICATION

Wei-Yu Chen

Carnegie Mellon University

weiyucfandrew.cmu.edu

Yu-Chiang Frank Wang
National Taiwan University

ycwang@ntu.edu.tw

Yen-Cheng Liu & Zsolt Kira
Georgia Tech

{ycliu, zkira}@gatech.edu

Jia-Bin Huang

Virginia Tech

jbhuangfvt .edu

CUB mini-ImageNet

Method 1-shot S-shot 1-shot S-shot

Baseline 47124+ 074 6416 2071 4211 £0.71 62.53 £0.69
Baseline++ 6053 +083 7934 4+061 4824 +0.75 6643 +0.63
MatchingNet 000 o0 0 o) 6L1I6E£089 7286 £070 48.14 £0.78 63.48 +0.66
ProtoNet “ oo o000 (00 51312091 7077 £069 4442 +084 6424 4072
MAML Finn et al. (2017 559024095 72094076 4647 +082 6271 4+0.71
RelationNet = o0 0 (0 6245 L 098 76.11 £ 069 4931 £ 085 66.60 4+0.69
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Performance Comparisons

REVISITING FINE-TUNING FOR FEW-SHOT LEARNING

Akihiro Nakamura

The University of Tokyo
nakamura@mi.t.u-tokyo.ac.jp

Tatsuya Harada
The University of Tokyo, RIKEN
harada@mi.t.u-tokyo.ac.jp

| Low-resolution Single-domain . High-resolution Single-domain

~ Fine-tune (Ours)
Baseline (Chen et al., 2019)
Basclinc++ (Chen et al., 2019)
MatchingNet (Vinyals et al., 2016)
ProtoNet (Snell et al., 2017)
MAML (Finn et al., 2017)
RelationNet (Sung et al., 2018)
MTL (Sun et al., 2019) |
Delta Encoder (Schwartz et al., 2018)

l-shot S.shot | -shot
BI90 £ 066 7450 £ 0.50  60.88 £0.71
42112071 6253+069 | 5237 +£0.79
48244075 6643+ 063 | 5397 +£0.79
46.6 60.0 54.49 + 081}
49422078 68202066 | 54.16 £ 0.82
ABTO£ 175 6315+ 091 | 54.60 £ 0.8
044+082 65324070 | 53.48 £ 0.86
61.2+ 1.8 755+ 08 -
59.9 69.7 .

Cross-domaun
S-shaot S.shot

79.824+0.49 7488+ 0.58
T4.00 £ 0.64% 6557 0708
7590 £ 061 6204 £ 0.76°
68.88 4 0.69° 53074074
7465 £ 0.64°  62.02 4+ 0.70°
66.62 = 083" 5134+ 0.72¢

70.20 £ 0.66°

57.71 £ 0.73



To Achieve Higher-Level Al

® [earning to model the world

Slides link:

42
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Generative Models

P(cat | gt )

Discriminative Model:
Learn a probability

P(dog]| ﬂ) distribution p(y|x)
N

ot is cCQ public d .
Dog image is CCO Public Domain

Monkey image is CCO Public Domain 43
Abstract image is free to use under the Pixabav license



Generative Models

Discriminative Model:
Learn a probability
distribution p(y|x)

Generative Model:
Learn a probability

distribution p(x)
Generative model: All possible images compete
with each other for probability mass Catimage is CCO oublic domain
Dog image is CCO Public Domain
Monkey image is CCO Public Domain 43

Abstractimage s free to use under the Pixabay license



Autoencoder

e An autoencoder consists of both an encoder and a decoder:

e .
P Y
e ML S
sl < H5

Input Data

44



Autoencoder

e An autoencoder consists of both an encoder and a decoder:

e Encoder: transform input 2 into latent representation 2

PR R
-,g ﬁ.@ Encoder
REagaE —
sl < s

Input Data <
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Autoencoder

e An autoencoder consists of both an encoder and a decoder:
e Encoder: transform input x into latent representation 2

e Decoder: generate recovered input  from 2

i PR ol e = S
’E & @ Encoder Decoder ’3 .n@
BEauE — | —— DS
eer Rl LT b <« HES

Input Data < Reconstructed data
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Autoencoder

e An autoencoder consists of both an encoder and a decoder:
e Encoder: transform input x into latent representation 2

e Decoder: generate recovered input  from 2

i PR ol e = S
’E & @ Encoder Decoder ’3 ‘ n@
REaaE — | —— Dheae
eer Rl LT b <« HES

Input Data < Reconstructed data

The targets are two-fold:
learn good encoder to compress the information
learn good decoder to recover the information

44



Vanilla Autoencoder

e = N e i = T S
.’4 ﬁ@ Encoder Decoder ’3 ‘n@
SmagaE — | — BEagae
lerl Rl | T sl « S5

Input Data < Reconstructed data

e Use NNs (Conv, MLP) to model encoder and decoder.

e Key: the dimension of 2z should be small for compressing
information: ensure to learn useful information.

e Train with MSE loss (input-output gap) : H5C\ o XH%
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Learned Result

Recover from original

ongeal ongina orgnal oo nal ongeal Ngina NgiNd oo nal g nal ongmal

2 I LM E

reconstructed COrstructed constructed econstructed reconstructed reconstructed structed

-um.

Recover from noisy (should also train with noisy data)

reconstructed reconstructed

oanal 4+ ndese SO Nal 4 NOse

orgina’ ¢+ Noue ONgINa + Noue SOgNal 4 Noise um;v'u)' & NOse oNngmal + Nose CNgInal 4 None

reconstructed constructed econstructed reconstructed reconstructed reconstructed reconstructed

IDHH*M

https://www.tensorflow.org/tutorials/generative/autoencoder 46




Variational Autoencoder

o R e . N
BN LE0E ccocer || pecorr BN LBEG
RasoE — | — REag2E
sl < S smb7i <« WSS

Input Data < Reconstructed data
: species, |
color, = representation
background, =  with semantics
weather -
lllllllllllllllllll L |

Why we need a model to recover the input?
Usually, we focus on learning a good encoder:
obtain good representation of data.
Vanilla AEs are not enough.We need better modeling of the generation process.
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Variational Autoencoder

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

After training, sample new data like this:

Sample from
conditional LL'

pe-(z | 2V)

Sample z decoder
from prior
po- (2) Z
A
encoder: encoder
estimate

p(z|z) L




Variational Autoencoder

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

After training, sample new data like this:

Sample from
conditional LL'

pe-(z | 2V)

Sample z decoder

from prior

po~ (2) <




Variational Autoencoder

After training, sample new data like this:

Sample from
conditional

pe-(z | 2V)

Sample z
from prior

po-(2)

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

decoder

h

Assume simple prior p(z), e.g. Gaussian.
Model encoder and decoder as NNs.



Variational Autoencoder

After training, sample new data like this:

Sample from
conditional

pe-(z | 2V)

Sample z
from prior

po-(2)

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Obijective: to maximize

Ey~q, (21 108 P9 (x12)] — Diey (4 (z1%), p(2))

h

decoder

Assume simple prior p(z), e.g. Gaussian.
Model encoder and decoder as NNs.
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Variational Autoencoder

After training, sample new data like this:

Sample from
conditional

pe-(z | 2V)

Sample z
from prior

po+(2)

Probabilistic spin on autoencoders:
1. Learn latent features z from raw data
2. Sample from the model to generate new data

Obijective: to maximize

Ey~q, (21 108 P9 (x12)] — Diey (4 (z1%), p(2))

likelihood difference between

decoder

h

posterior and prior

Assume simple prior p(z), e.g. Gaussian.
Model encoder and decoder as NNs.

48



Generation Results

32x32 CIFAR-10 Labeled Faces in the Wild

.

Figures from (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017.
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Generation Results

DO NANNANANANN NSNS

QAR ELLLLLLYWNYNNNNN~
QUAVIY NN LLLLLVYY Y NN~
QAUAVVNININintgto e ©OVOVVWY W~~~
QAVVHIHINNNWW W BVIVIYY W - - —
QOOOUOHINNNMNHEBPBDIOIVIY Y W - - —
QAOQOOMHIMNMMMON M DIOID D W@ - - —
QOODODMMMMMN M W®O DD D e —
OODOMMMM NN MDD D D e e
OO0DMMOMMMMM WP DD e
QAN 000000000 o~ O~ 0~ P =
SR LG E ek ok 2k 2R SR Sl S
il dogorororororraTaaoanN~N
SdadadadadogorrrorrrrrTIIINNNN
SddddgoorororrrddTdr22INN
SAdTTTTTrTrrsrr>rdrr2r22NN

I g gl gl e ol el el el ol ol ol S N N NI NG N |

Vary z,

The diagonal prior on p(z) causes
dimensions of z to be independent
“Disentangling factors of variation”

Vary z,
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Latent Space Editing

The diagonal prior on p(z) causes
dimensions of z to be independent

“Disentangling factors of variation”

Degr\e/: :f zmile :Sajst:gt';lq:im . o
|| EEEEREERE
TN RN RS R
SEEEEEEEEE
B EEEE

Head pose

<
Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014 Va ry z, -



Latent Space Editing

The diagonal prior on p(z) causes
dimensions of z to be independent

“Disentangling factors of variation”

Degree of smile

Vary z,

To make the learned representations
have semantic meanings,
disentanglement is important.

Kingma and Welling, Auto-Encoding Variational Beyes, ICLR 2014

“Jj‘t ‘54‘0 A _ .
SRERERERRE

T
e e e
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5 e
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Head pose

Vary z,
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Generative Adversarial Networks

o Target: obtain a model for p(z) , then we can sample data from it.

53



Generative Adversarial Networks

o Target: obtain a model for p(z) , then we can sample data from it.

Idea: Introduce a latent variable z with simple prior p(z).
Sample z ~ p(z) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution p.. Want p; = py.i.!

Generator Generated
Network Sample

Sample ol
z from p, '

Train Generator Network G to convert
z into fake data x sampled from pg




Generative Adversarial Networks

o Target: obtain a model for p(z) , then we can sample data from it.

Idea: Introduce a latent variable z with simple prior p(z).
Sample z ~ p(z) and pass to a Generator Network x = G(z)
Then x is a sample from the Generator distribution p.. Want p; = py.i.!

Generator Generated Discriminator
Network Sample Network
Sample 7 > G : — Fake
z from p, B, b
Train Generator Network G to convert
. — Real
z into fake data x sampled from pg

Real Sample

The key idea is to train a discriminator to classify fake and real data.
A good generator should fool the discriminator to make its accuracy low:

PG — Pdata



Adversarial Training

Generator Generated Discriminator
Network Sample Network
Sample
p 7 > G : —> Fake
z from p, .

} — Real

min max (Ex"’pdata [log D(x)] + E,~p() [log (1 — D(G( )))D
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Adversarial Training

Generator Generated Discriminator
Network Sample Network
Sample
z from p,

} — Real

Discriminator wants
D(x) = 1 for real data
A

’

.
min max (ExNPdata [log D(x)| + E,~p(2) [log (1 - D( (Z)))D
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Adversarial Training

Generator Generated Discriminator
Network Sample Network
Sample
z from p,

} — Real

Discriminator wants Discriminator wants
D(x) = 1 for real data D(x) = 0 for fake data
A A
[ \ [ \

mﬁin max (Ex"’pdata [log D(x)] + E,~p() [log (1 — D(G(z)))])
\

Y
Generator wants

D(x) = 1 for fake data
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Adversarial Training

Generator Generated Discriminator
Network Sample Network
oo [ [ | e
z from p, .
: D
} — Real
Discriminator wants Discriminator wants
D(x) = 1 for real data D(x) = O for fake data
A A
( \ ( \
mﬁin max (Ex"’pdata [log D(x)] + E,~p() [log (1 — D(G(z)))])
N
Y
MinMax Game between Generator wants

generator and discriminator D(x) = 1 for fake data
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Generation Results

Nearest neighbor from training set



Generation Results

Generative Adversarial Networks: DC-GAN

Generator

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016
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Generation Results

Generatwe Adversarlal Networks DC- GAN
— |

- e

Samples X
from the 4 S
model -
look
much
better!

Radford et al,
ICLR 2016
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GAN’s Latent Space

Generative Adversarial Networks: Interpolation
A w 3 £3 *s.e_

"-~~-~¢_-“‘»~‘-~-- ’ * v & ,- i TP g SR » i
'v"\.';., I .
Interpolating "-“_-“
between
points in
latent z
space

Radford et al,
ICLR 2016
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GAN’s Latent Space

Generative Adversarial Networks: Vector Math

Smiling Neutral Neutral
woman woman man

Samples
from the <

model

Radford et al, ICLR 2016 59



GAN’s Latent Space

Generative Adversarial Networks: Vector Math

Smiling Neutral Neutral
woman woman man

Samples
from the <

model

Average Z
vectors, do
arithmetic

Radford et al, ICLR 2016 59



GAN’s Latent Space

Generative Adversarial Networks: Vector Math

Smiling Neutral Neutral
woman woman man

Smiling Man

Samples
from the <

model

Average Z
vectors, do
arithmetic

Radford et al, ICLR 2016 59



GAN’s Latent Space

Man with Man w/o Woman
glasses glasses w/o glasses

Samples

from the <

model

Average Z
vectors, do
arithmetic

Radford et al, ICLR 2016 60



GAN’s Latent Space

Man with Man w/o Woman
glasses glasses w/o glasses

Samples

from the <

model

Woman with
glasses

Average Z
vectors, do
arithmetic

Radford et al, ICLR 2016 60



High-Resolution Generation

256 x 256 bedrooms 1024 x 1024 faces

Karras et al, “Progressive Growing of GANs for Improved Quality, Stability, and Variation”, ICLR 2018
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High-Resolution Generation

512 x 384 cars 1024 x 1024 faces

Karras et al, “A Style-Based Generator Architecture for Generative Adversarial Networks”, CVPR 2019
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Conditional GANs

We can also make GAN to generate data under given context 1

1024

f

4

Z—>100z —

4

Project and reshape

Generator

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016



Conditional GANs

We can also make GAN to generate data under given context 1

Y\

Z—}xooz —

4

4

Project and reshape

Generator

Radford et al, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks”, ICLR 2016



Text-to-lmage Generation

The bird is A bird with a This small
This birdisred  short and medium orange  black bird has
and brown in stubby with bill white body  a short, slightly
color, with a yellow on its gray wings and  curved bill and

stubby beak body webbed feet long legs

Eggs fruit A street sign
A group of candy nuts on a stoplight
A picture of a people on skis  and meat pole in the
very clean stand in the served on middle of a
living room SNOW white dish day

Zhang et al, “StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks.”, TPAMI 2018
Zhang et al, “StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks.”, ICCV 2017
Reed et al, “Generative Adversarial Text-to-Image Synthesis”, ICML 2016
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Image-to-lmage Translation

Labels 10 Sreet Scane Labels 1o Facade BW to Color

Isola et al, “Image-to-Image Translation with Conditional Adversarial Nets”, CVPR 2017 65



Image-to-Image Iranslation

Zhu et al, “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”, ICCV 2017 66



Other-to-Image Translation

Label Map to Image Input: Label Map

Tcovd | sy |

Semantic Manipulation Using Segmentation Map >

s
s
|~

Park et al, “Semantic Image Synthesis with Spatially-Adaptive Normalization”, CVPR 2019 67
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Taming Transformers for High-Resolution Image Synthesis, CVPR21. 68



VQ-GAN

conditioning samples

Taming Transformers for High-Resolution Image Synthesis, CVPR21.
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VQ-GAN

conditioning samples

Taming Transformers for High-Resolution Image Synthesis, CVPR21.
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Text-to-Image with Diffusion Model

Sprouts in the shape of text ‘Imagen’ coming out of a A photo of a Shiba Inu dog with a backpack riding a A high contrast portrait of a very happy fuzzy panda

fairytale book. bike. It is wearing sunglasses and a beach hat. dressed as a chef in a high end kitchen making dough.

There is a painting of flowers on the wall behind him.

Teddy bears swimming at the Olympics 400m Butter- A cute corgi lives in a house made out of sushi. A cute sloth holding a small treasure chest. A bright
fly event. golden glow is coming from the chest.

Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding, Neur|PS22.
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To Achieve Higher-Level Al

¢ |oint learning of perception and reasoning

Slides link:
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Decision Making

e Conduct action in any state of an environment.

agent environment
~ state utility

action

In most problems, the agent needs to do a sequence of actions
w.r.t.a sequence of states.
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Decision Making

e Conduct action in any state of an environment.

agent environment
~ state utility

action

In most problems, the agent needs to do a sequence of actions
w.r.t.a sequence of states.
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Internal vs. External Model

Since the agent cannot fully know the external model,
it should build an internal model itself for decision making.

environment
external model

action

74



Knowledge in Pacman

know only the positions
VS.
know the distance to the ghosts
VS.
know the high-level strategy of the
ghosts

The search agent knows the external model,
but it can make no changes or abstractions when the model is primitive.
The knowledge-based agents can benefit from the internal model
not just by covering the external model.
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Knowledge in Al Systems

ocean ‘ ~ country

o
land ‘ ~
o

' ¥ population

mountain

longitude and latitude ocean, land, mountain

e Turn primitive external states into meaningful internal states.
e Reason about most useful states for decision making.

e Capture internal relationships among factors of decision making.

These reasoning rules are called knowledges in an Al system.
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Knowledge Reasoning Systems

¢ Logic reasoning Principia CAUSALITY

Mathematlca DDARARIICT x —= _SECOND EDITION
\WDORADILID L)

e Probabilistic reasoning

MOENLS, REASONING
AND INFEREN(E

e (Causal reasoning
JUDEA PEARL

Currently we assume that the agents can access to
a knowledge base (facts) and a reasoning rule system
but cannot change them.
In some sense, the agents just use knowledge but cannot obtain or increase.
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Knowledge Reasoning Systems

¢ |ogic reasoning Principia

Mathematica

Currently we assume that the agents can access to
a knowledge base (facts) and a reasoning rule system
but cannot change them.
In some sense, the agents just use knowledge but cannot obtain or increase.
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Logic Reasoning Systems

¢ Handling decision problems (true/false arguments).

¢ Handling discrete and (not exactly) deterministic world.




Building Blocks of Logic Systems:
Syntax & Semantics

= Syntax: What sentences are allowed?

= Semantics:
= What are the possible worlds?

* Which sentences are true in which worlds? (i.e., definition of truth)

Syntaxland Semanticsland

Slide courtesy: Stuart Russell & Sergey Levine
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Building Blocks of Logic Systems:
Syntax & Semantics

= Syntax: What sentences are allowed?

= Semantics:
* What are the possible worlds? models

= Which sentences are true in which worlds? (i.e., definition of truth)

Syntaxland Semanticsland

Slide courtesy: Stuart Russell & Sergey Levine
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Building Blocks of Logic Systems:
Syntax & Semantics

= Syntax: What sentences are allowed?

= Semantics:
* What are the possible worlds? models

= Which sentences are true in which worlds? (i.e., definition of truth)

Syntaxland Semanticsland

Example: |+1=2

Slide courtesy: Stuart Russell & Sergey Levine
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The Pacman Example
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Logic Inference: Entailment

= Entailment: o |= 3 (“o entails ” or “P follows from o) iff in
every world where o is true, (3 is also true

" |.e,, the a-worlds are a subset of the 3-worlds [models(c.) = models([3)]

" In the example, a, |= o,

" (Say a, is =QARASAW
o, is—=Q)

Slide courtesy: Stuart Russell & Sergey Levine
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Logic Inference: Entailment

= Entailment: o |= 3 (“o entails ” or “P follows from o) iff in
every world where o is true, (3 is also true

= |.e., the o-worlds are a subset of the B-worlds [models(c.) — models([3)]
" In the example, a, |= o,

" (Say a, is =QARASAW
o, is—=Q)

Slide courtesy: Stuart Russell & Sergey Levine
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Syntax vs. Semantics (Cont.)

Sentences ~ T~ = Sentence
| Entails |
o | o |
3 | 3 |
o | Q |
_______ = O
|
Y Y
Aspects ofthe =~ —~ "7~ = Aspect of the
real world Follows real world

Semantics need to have groundings in the real world.
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Knowledge Reasoning Systems

e Probabilistic reasoning

Currently we assume that the agents can access to
a knowledge base (facts) and a reasoning rule system
but cannot change them.
In some sense, the agents just use knowledge but cannot obtain or increase.
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Basic Tasks in Probabilistic Reasoning

e |n probabilistic reasoning, we try to model the joint distribution
of a set of random variables P(X;, X5, ..., X,,) and do:

¢ |[nference:answering queries about the marginal distributions.

¢ Conditional independence test: decide the conditional
independence of a subset of random variables.

e | earning: obtain the structure of the joint distribution.

Inference is to reasoning about the value of the variables.
The independence test and learning are to understand relationship
among variables.
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Graphical Models

e Graphical models represent the joint distribution over a set of
random variables with directed or undirected graphs.

¢ nodes: random variables (can be hidden or observable)

® edges: the interaction between a pair of r. v.

DOE
\|/
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Bayesian Networks & Markov Random Fields
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Equivalent representation power!
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Knowledge Reasoning Systems

CAUSALITY

= SECONDEDITION

® Causal reasoning " MODELS, REASONING

AND INFEREN(E

JUDEA PEARL

Currently we assume that the agents can access to
a knowledge base (facts) and a reasoning rule system
but cannot change them.
In some sense, the agents just use knowledge but cannot obtain or increase.
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Causation vs. Correlation

e Bayesian networks encode joint distributions.
¢ |oint distributions can be factored in different ways.

e Arrows in BNs only determine one way of
factoring.

The directions of correlations can be
represented in many ways. \ /

The directions of causation is unique!

89



Why Causal Relationship is Important for Al?

The causal knowledge is robust against environmental changes

e Knowing whether the grass is wet
changes the conditional probability / \
P(rain|sprinkler, cloudy)
P(rain|sprinkler, cloudy, grass = wet)

e But the causal relationship among
sprinkler; cloudy, and rain should not
change!
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The Ladder of Causality

Counterfactuals

Imagining
Interventions Whot if | hod done ... ?
Doing Wey?
Associations Whot would 1 do ... ?
Seeing How?
what if I see ... ? causal diagrams

functional causal models

joint distributions
like BNs
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Simpson’s Paradox

Treatment

- Treatment A  Treatment B
Stone size

Group 1 Group 2
93% (81/87) 87% (234/270)

Small stones

Group 3 Group 4

Large stones
73% (192/263) 69% (55/80)

Both 78% (273/350) | 83% (289/350)

Which treatment is better? VWhy!?
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Simpson’s Paradox

Treatment

- Treatment A  Treatment B
Stone size

Group 1 Group 2
93% (81/87) 87% (234/270)

Small stones

Group 3 Group 4

Large stones
73% (192/263) 69% (55/80)

Both 78% (273/350) | 83% (289/350)

Which treatment is better? VWhy!?

Large stones are harder, and treatment B is cheaper
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Simpson’s Paradox

Y\

Treat

NS

Recover

e Similar example: air conditioner on vs. feeling hot

Discovering causal relationship should block those underlying effects on the causes!
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Intervention

/\

Nt

Recover

® The key idea is to consider the intervention P(recover|do(treatA))
instead of the association P(recover|treatA)

e Common method: random controlled experiments!
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Intervention

Recover

® The key idea is to consider the intervention P(recover|do(treatA))
instead of the association P(recover|treatA)

e Common method: random controlled experiments!
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Intervention

We consider a changed BN!

® The key idea is to consider the intervention P(recover|do(treatA))
instead of the association P(recover|treatA)

e Common method: random controlled experiments!
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Back-Door Criterion

Treatment

- Treatment A Treatment B
Stone size

Group 1 Group 2
93% (81/87)  87% (234/270)

Small stones

Treat
Group 3 Group 4 B

Large stones
73% (192/263) 69% (55/80)

Both 78% (273/350) | 83% (289/350) \ /

Recover

e Experiments are not always necessary. Can infer from observations!
e |ust close the “back doors” by conditioning on parent variables.

¢ Many interesting algorithms.
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Back-Door Criterion

Treatment
Stone size

Treatment A Treatment B

Group 1 Group 2
Small stones

93% (81/87) | 87% (234/270)

Group 3 Group 4

Large stones
73% (192/263) 69% (55/80)

Both 78% (273/350)  83% (289/350)

e Experiments are not always necessary. Can infer from observations!

/TN
N S

Recover

Treat

e Just close the “back doors” by conditioning on parent variables.

¢ Many interesting algorithms.
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Counterfactuals

If the treatment was not given,

Counterfactuals .
would the patient recover!

Imagining
Whetif l hod done ... 7
Why?

¢ We can not even get data to estimate!

e But they lie at heart of human intelligence.
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Functional Causal Models

® We should know more than conditional probabilities: the
underlying physical mechanism among causes and effects.

¢ Functional causal models: ,nmodeled

randomness
x;=f:(pa,u), 1 =1,...,n
effect control
variables

e Example: x;= D ayx+u; i=1,...,n
k# 1
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Counterfactuals

X — Uy,

y =xur + (1 —x)(1 — uy)

e Abduction: put the evidence into the equations:

U1 — 1, Uo — 1
e Action: set the new control variable:
r = (

e prediction: get the new effect:

y =0

X:treatment
Y: death

Know: X=1,Y=|
Ask: whether
X=0,Y=0?
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Counterfactuals

X — Uy,

y =xur + (1 —x)(1 — uy)

e Abduction: put the evidence into the equations:

ulzl,UQ:l

e Action: set the new control variable:

x = (
e prediction: get the new effect:
y =70

Similar to traveling in parallel universe

X:treatment
Y: death

Know: X=1,Y=|
Ask: whether
X=0,Y=0?
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Joint Perception-Reasoning Learning
in Computer Graphics

e Graphics: generate visual objects with semantic factors

o Al + Graphics: generate visual objects with semantic factors
based on understanding humans and the world

semantic factors visual objects
cat
fat
sitting




Towards Visual Object Generation with High-Level Al

=—=p human design =—=p |earn from data

Previous Traditional
Visual Object Generation

Current Deep Learning Aided
Visual Object Generation

Future Al-Based
Visual Object Generation

cat

blue >
fat program
sitting

z ~N(p,0) >
DNN
cat blue male
sitting ¢
: DNN
symbolic

inference v
cat yellow female

flying

-—=p- |nference by knowledge

No Al
Human Programming

Low-Level Al
Learning from Data

High-level Al
Learning from Data &
Symbolic Inference



Bridging Simulated And Real World

| want a kitty like this but cuter

cat
male disentanglement
blue
<
DNN
symbolic
inference

(how to be cuter?) v

cat
female > >
yellow DNN sim to real




Learning Disentangled Representations with Semantic Guidance

cat

> male disentanglement
blue
< <
Knowledge DNN
Database symbolic
inference

(how to be cuter?) v

cat
female E—
yellow DNN

» Disentanglement: Learning semantic factors from visual objects
* Existing methods focus on unsupervised disentanglement, e.g. VAE

* Unsupervised disentanglement cannot learn complex semantic factors for
symbolic inference

* Supervision is necessary for disentanglement [Locatello et al., 2019]

* Make the semantic factors have symbolic groundings



To Achieve Higher-Level Al

e Take-home messages

Slides link:
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https://yaoxiangding.github.io/introML-2023/lec8-frontiers.pdf

Learning from Small Data

e Meta-learning is learning-to-learn, to minimize the transfer risk

arg min Epn 7 o p{ By p [L(AD, 00), (2,9)]

¢ A meta-learning problem can be defined by its inner task:

Given (A), use (B) and do (C), to achieve (D)

e Optimization, non-parametric and black-box approaches can
achieve good performance in few-shot learning tasks. However,
the performance of fine-tune baseline is also strong.

Alternative ways for meta-learning/learning from small data?
Comparison to direct fine-tuning of large foundation models?
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Learning to Model the VVorld

e Autoencoders compress information using an encoder and
recover the information with a decoder. Their major advantage is

to learn good representation of data from learning to compress
and decompress information.

¢ GANSs are based on the idea of adversarial training between
generator and discriminator, leading to good generation quality.

¢ More powerful generative models: text-to-image diffusion models.
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Joint Learning of Perception and Reasoning

e Knowledge reasoning systems are used to build internal models of
agents for modeling and representing the real world.

e | ogic inference is the most classical method for knowledge
reasoning, which deals with discrete and deterministic problems.

e Probabilistic reasoning models the real world with a joint probability
distribution of random variables.

e The ladder of causal reasoning: association, intervention, and
counterfactual.

e Central challenge: learn high-level reasoning knowledge and low-level
perception model jointly.
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Thanks for your attention!
Discussions!

Acknowledgement: Many materials in this lecture are taken from
https://sites.google.com/view/icml | 9metalearning
https://inst.eecs.berkeley.edu/~cs188/sp |9/
https://web.eecs.umich.edu/~justincj/teaching/eecs498/FA2020/schedule.html
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